scholarly journals Participatory Evaluation and Determination of N and P Fertilizer Application Rate on Yield and Yield Components of Upland Rice (NERICA-4) at Bambasi District, Benishangul-Gumuz Regional State

Author(s):  
Getahun Dereje ◽  
Bogale Walelign ◽  
Assefa Giddisa ◽  
Hailemariam Solomon ◽  
Afwork Hagos ◽  
...  
2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Ashebir Getie ◽  
Alemayehu Kiflu ◽  
Gashaw Meteke

Crop response to phosphorus (P) application is often erratic in most acidic soil types. The main processes for P losses from agricultural fields are fixation, crop removal, erosion, surface runoff, and subsurface leaching. The purpose of this experiment was to evaluate adsorption properties of selected soils, determine the external phosphorous requirements (EPRs) of the soils, and identify factors contributing to P sorption in two soils in North Ethiopia. In this experiment, separately weighed 1 g soil samples were equilibrated with KH2PO4 at rates of 0.5, 5, 10, 20, 30, 40, and 50 mg PL−1. The P sorption data were fitted well with both Langmuir and Freundlich models with average r2 values of 0.91 and 0.88, respectively. The adsorption maximum (Xm) of the Langmuir isotherm ranged from 588.20 mg P kg−1 soil in Luvisols to 833.3 mg P kg−1 soil in Nitisols. The EPRL values ranged between 86.20 to 93.28 mg P kg−1 for soils of the study area. Among the soil properties, clay content and Ex. Al were positively correlated with Xm. The path analysis revealed that clay, pH, and Av. P had a direct effect on P sorption parameters. The EPRL of the studied soils was 3.44 to 3.6 times greater than the blanket P fertilizer rate recommendation. It is concluded that P sorption models can effectively be used to discriminate soils based on P fixation ability. The result further indicates that the current P fertilizer application rate of 50 kg P ha−1 being practiced across all soil types should be revised after validating the models and EPR values estimated in this study for each soil both under greenhouse and in-the-field conditions.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 740
Author(s):  
Ken Okamoto ◽  
Shinkichi Goto ◽  
Toshihiko Anzai ◽  
Shotaro Ando

Fertilizer application during sugarcane cultivation is a main source of nitrogen (N) loads to groundwater on small islands in southwestern Japan. The aim of this study was to quantify the effect of reducing the N fertilizer application rate on sugarcane yield, N leaching, and N balance. We conducted a sugarcane cultivation experiment with drainage lysimeters and different N application rates in three cropping seasons (three years). N loads were reduced by reducing the first N application rate in all cropping seasons. The sugarcane yields of the treatment to which the first N application was halved (T2 = 195 kg ha−1 N) were slightly lower than those of the conventional application (T1 = 230 kg ha−1 N) in the first and third seasons (T1 = 91 or 93 tons ha−1, T2 = 89 or 87 tons ha−1). N uptake in T1 and T2 was almost the same in seasons 1 (186–188 kg ha−1) and 3 (147–151 kg ha−1). Based on the responses of sugarcane yield and N uptake to fertilizer reduction in two of the three years, T2 is considered to represent a feasible fertilization practice for farmers. The reduction of the first N fertilizer application reduced the underground amounts of N loads (0–19 kg ha−1). However, application of 0 N in the first fertilization would lead to a substantial reduction in yield in all seasons. Reducing the amount of N in the first application (i.e., replacing T1 with T2) improved N recovery by 9.7–11.9% and reduced N leaching by 13 kg ha−1. These results suggest that halving the amount of N used in the first application can improve N fertilizer use efficiency and reduce N loss to groundwater.


2019 ◽  
Vol 11 (4) ◽  
pp. 1165 ◽  
Author(s):  
Haixia Wu ◽  
Yan Ge

This paper takes 516 households who planted wheat in Heyang County, Shaanxi Province in 2018, as samples to construct three policy environments: Technological guidance for planting, subsidies for organic fertilizer application, and agricultural tailwater discharge standards. The experimental choice method was used to empirically analyze policy preferences during the process of fertilizer reduction. The results indicate that households show different preferences for the three policy settings: The fertilizer application rate is reduced by 6.98% if providing full technological guidance for farmers throughout the wheat planting process and is reduced by 5.18% under the background of providing appropriate organic fertilizer subsidies. The agricultural tailwater discharge standards have the least impact on the reducing level of chemical fertilizer application, with decreasing amounts of only 1.85% and 0.77% under the second-level and the first-level agricultural tailwater discharge standards, respectively. These results indicate that households in Heyang County, Shaanxi Province, demonstrate a low willingness to accept the agricultural tailwater discharge standards in order to cut down on the amount of chemical fertilizer application and the agricultural non-point source pollution. Therefore, compared with a compounded annual growth rate (CAGR) of 1% of fertilizer usage nationwide according to the Chinese Ministry of Agriculture, given the current planting environment and policies design, providing comprehensive technological guidance as well as price subsidies for the organic fertilizer can significantly and robustly reduce the excessive application of fertilizer in Heyang County, Shaanxi Province, under the best scenario, thereby further alleviating agricultural non-point source pollution.


2002 ◽  
Vol 94 (6) ◽  
pp. 1393-1399 ◽  
Author(s):  
Nathan A. Slaton ◽  
Charles E. Wilson ◽  
Richard J. Norman ◽  
Sixte Ntamatungiro ◽  
Donna L. Frizzell

2020 ◽  
Vol 12 (11) ◽  
pp. 4691
Author(s):  
Helder Zavale ◽  
Greenwell Matchaya ◽  
Delfim Vilissa ◽  
Charles Nhemachena ◽  
Sibusiso Nhlengethwa ◽  
...  

Mozambique is characterized by low agricultural productivity, which is associated with low use of yield-enhancing agricultural inputs. Fertilizer application rate averaged 5.7 kg ha−1 in Mozambique during the period 2006 to 2015, considerably low by regional targets, yet constraints that affect fertilizer use have not been thoroughly investigated. This study examined the constraints on fertilizer value chains in Mozambique to contribute to fertilizer supply chain strengthening. We used a combination of multivariate analysis and descriptive methods. Our findings indicate that fertilizer use has both demand and supply constraints. Key demand-side constraints include liquidity challenges, limited awareness about the benefits of using fertilizer, and low market participation, while the main supply-side constraints include high transaction costs, limited access to finance, and lack of soil testing results and corresponding fertilizer recommendations by soil type and crop uptake. These results suggest that scaling up the input subsidy program through vouchers (either paper-based vouchers or e-vouchers) with demonstration plots and effective targeting could drive up smallholders’ demand for fertilizer and fertilizer supply by strengthening a sustainable network of wholesalers and retailers. This would likely boost agricultural productivity.


2006 ◽  
Vol 70 (1) ◽  
pp. 235-248 ◽  
Author(s):  
R. F. Grant ◽  
E. Pattey ◽  
T. W. Goddard ◽  
L. M. Kryzanowski ◽  
H. Puurveen

2017 ◽  
Vol 38 (4Supl1) ◽  
pp. 2409
Author(s):  
Mohammad Ali Aboutalebian ◽  
Masoumeh Malmir

In order to study interaction between mycorrhiza and bradyrhizobium on yield of soybean under different amounts of starter nitrogen fertilizer, a field experiment was conducted at the agricultural research station, Bu-Ali Sina University in 2015 growing season. A factorial experiment based on randomized complete block design was arranged with three replications. Experiment factors covering three levels of starter nitrogen of 0, 30 and 60 kg ha-1, bradyrhizobiumin two level of inoculated and non-inoculated and mycorrhiza including application and non-application levels. Results indicated that plant height, number of leaves per plant, yield and yield components and biological yield and mycorrhizal symbiosis percent affected by interaction of studied factors significantly. Maximum number of pod per plant achieved from combination of 30 kg Nitrogen and bradyrhizobium. Also both bio-fertilizer was able to increase number of pod per plant. Maximum 1000 seed weight obtained from inoculation of plants with bradyrhizobium and mycorrhiza simultaneously with no nitrogen utilization. Application of 60 kg ha-1 nitrogen caused to decreased mycorrhizal symbiosis about 20.22 percent in comparison with no use of starter fertilizer. Application bradyrhizobium and mycorrhiza under the application of 30 kg ha-1 nitrogen, produced the highest grain yield (511.67 g m-2) and biological yield (1223.16 g m-2).


Sign in / Sign up

Export Citation Format

Share Document