scholarly journals Ecogeographically and Non-Ecogeographically Forecasting Discontinuous Canopied Simulium damnosum s.l. Habitats by Interpolating Metrizable Sub-Mixel Mean Solar Exoatmospheric Quantum Scalar Irradiance where θi is a Zenith Angle and Diatomically Etiolated Xanthophylls with Azimutually Isotropic Sources of Chloroplastic Carotenoid Zeaxanthins Spectrally Extracted from a Decomposed RapidEye™ Red Edge Normalized Difference Vegetation Index Reference Targeted Biosignature: A Case Study in Burkina Faso and Uganda

2015 ◽  
Vol 05 (01) ◽  
Author(s):  
Benjamin G. Jacob ◽  
Robert J.Novak
Author(s):  
Yuping Dong ◽  
Helin Liu ◽  
Tianming Zheng

Asthma is a chronic inflammatory disease that can be caused by various factors, such as asthma-related genes, lifestyle, and air pollution, and it can result in adverse impacts on asthmatics’ mental health and quality of life. Hence, asthma issues have been widely studied, mainly from demographic, socioeconomic, and genetic perspectives. Although it is becoming increasingly clear that asthma is likely influenced by green spaces, the underlying mechanisms are still unclear and inconsistent. Moreover, green space influences the prevalence of asthma concurrently in multiple ways, but most existing studies have explored only one pathway or a partial pathway, rather than the multi-pathways. Compared to greenness (measured by Normalized Difference Vegetation Index, tree density, etc.), green space structure—which has the potential to impact the concentration of air pollution and microbial diversity—is still less investigated in studies on the influence of green space on asthma. Given this research gap, this research took Toronto, Canada, as a case study to explore the two pathways between green space structure and the prevalence of asthma based on controlling the related covariates. Using regression analysis, it was found that green space structure can protect those aged 0–19 years from a high risk of developing asthma, and this direct protective effect can be enhanced by high tree diversity. For adults, green space structure does not influence the prevalence of asthma unless moderated by tree diversity (a measurement of the richness and diversity of trees). However, this impact was not found in adult females. Moreover, the hypothesis that green space structure influences the prevalence of asthma by reducing air pollution was not confirmed in this study, which can be attributed to a variety of causes.


2021 ◽  
Vol 3 (1) ◽  
pp. 2
Author(s):  
Diana Daccak ◽  
Inês Carmo Luís ◽  
Ana Coelho Marques ◽  
Ana Rita F. Coelho ◽  
Cláudia Campos Pessoa ◽  
...  

As the human population is growing worldwide, the food demand is sharply increasing. Following this assumption, strategies to enhance the food production are being explored, namely, smart farming, for monitoring crops during the production cycle. In this study, a vineyard of Vitis vinifera cv. Moscatel located in Palmela (N 38°35′47.113′′ O 8°40′46.651) was submitted to a Zn biofortification workflow, through foliar application of zinc oxide (ZnO) or zinc sulfate (ZnSO4) (at a concentration of 60% and 90%—900 g·ha−1 and 1350 g·ha−1, respectively). The field morphology and vigor of the vineyard was performed through Unmanned Aerial Vehicles (UAVs) images (assessed with altimetric measurement sensors), synchronized by GPS. Drainage capacity and slopes showed one-third of the field with reduced surface drainage and a maximum variation of 0.80 m between the extremes (almost flat), respectively. The NDVI (Normalized Difference Vegetation Index) values reflected a greater vigor in treated grapes with treatment SZn90 showing a higher value. These data were interpolated with mineral content, monitored with atomic absorption analysis (showing a 1.3-fold increase for the biofortification index). It was concluded that the used technologies furnishes specific target information in real time about the crops production.


2019 ◽  
Vol 11 (18) ◽  
pp. 2127
Author(s):  
Polinova ◽  
Salinas ◽  
Bonfante ◽  
Brook

The ability to effectively develop agriculture with limited water resources is an important strategic objective to face future climate change and to achieve the Sustainable Development Goal 2 (SDG2) of the United Nations. Since new conditions increasingly point to a limited water supply, the aim of modern irrigation management is to be sure to maximize the crop yield and minimize water use. This study aims to explore the advantages of the traditional agronomic approach, agro-hydrological model and field feedback obtained by spectroscopy, to optimize irrigation water management in the example of a cotton field. The study was conducted for two summer growing seasons in 2015 and 2016 in Kibbutz Hazorea, near Haifa, Israel. The irrigation schedule was developed by farmers using weather forecasts and corrected by the results of field inspections. The Soil Water Atmosphere Plant (SWAP) model was applied to optimize seasonal water distribution based on different criteria (critical soil pressure head and allowable daily stress). A new optimization algorithm for irrigation schedules by weather forecasts and vegetation indices was developed and presented in this paper. A few indices related to physical parameters and plant health (Normalized Difference Vegetation Index, Red Edge Normalized Difference Vegetation Index, Modified Chlorophyll Absorption Ratio Index 2, and Photochemical Reflectance Index) were considered. Red Edge Normalized Difference Vegetation Index proves itself as a suitable parameter for monitoring crop state due to its clear-cut response to irrigation treatments and was introduced in the developed algorithm. The performance of the considered irrigation scheduling approaches was assessed by a simulation model application for cotton fields in 2016. The results show, that the irrigation schedule developed by farmers did not compensate for the absence of precipitation in spring, which led to long-term lack of water during crop development. The optimization developed by SWAP allows determining the minimal amount of water which ensures appropriate yield. However, this approach could not take into account the non-linear effect of the lack of water at specific phenological stages on the yield. The new algorithm uses the minimal sufficient seasonal amount of water obtained from SWAP optimization. The approach designed allows one to prevent critical stress in cotton and distribute water in conformity with agronomic practice.


2019 ◽  
Vol 11 (23) ◽  
pp. 2807 ◽  
Author(s):  
Arthur Bayle ◽  
Bradley Carlson ◽  
Vincent Thierion ◽  
Marc Isenmann ◽  
Philippe Choler

Shrub encroachment into grassland and rocky habitats is a noticeable land cover change currently underway in temperate mountains and is a matter of concern for the sustainable management of mountain biodiversity. Current land cover products tend to underestimate the extent of mountain shrublands dominated by Ericaceae (Vaccinium spp. (species) and Rhododendron ferrugineum). In addition, mountain shrubs are often confounded with grasslands. Here, we examined the potential of anthocyanin-responsive vegetation indices to provide more accurate maps of mountain shrublands in a mountain range located in the French Alps. We relied on the multi-spectral instrument onboard the Sentinel-2A and 2B satellites and the availability of red-edge bands to calculate a Normalized Anthocyanin Reflectance Index (NARI). We used this index to quantify the autumn accumulation of anthocyanin in canopies dominated by Vaccinium spp. and Rhododendron ferrugineum and compared the effectiveness of NARI to Normalized Difference Vegetation Index (NDVI) as a basis for shrubland mapping. Photointerpretation of high-resolution aerial imagery, intensive field campaigns, and floristic surveys provided complementary data to calibrate and evaluate model performance. The proposed NARI-based model performed better than the NDVI-based model with an area under the curve (AUC) of 0.92 against 0.58. Validation of shrub cover maps based on NARI resulted in a Kappa coefficient of 0.67, which outperformed existing land cover products and resulted in a ten-fold increase in estimated area occupied by Ericaceae-dominated shrublands. We conclude that the Sentinel-2 red-edge band provides novel opportunities to detect seasonal anthocyanin accumulation in plant canopies and discuss the potential of our method to quantify long-term dynamics of shrublands in alpine and arctic contexts.


2016 ◽  
Vol 8 (1) ◽  
Author(s):  
Miro Govedarica ◽  
Dušan Jovanović ◽  
Filip Sabo ◽  
Mirko Borisov ◽  
Milan Vrtunski ◽  
...  

AbstractThe aim of the paper is to compare Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (


Author(s):  
Perminder Singh ◽  
Ovais Javeed

Normalized Difference Vegetation Index (NDVI) is an index of greenness or photosynthetic activity in a plant. It is a technique of obtaining  various features based upon their spectral signature  such as vegetation index, land cover classification, urban areas and remaining areas presented in the image. The NDVI differencing method using Landsat thematic mapping images and Landsat oli  was implemented to assess the chane in vegetation cover from 2001to 2017. In the present study, Landsat TM images of 2001 and landsat 8 of 2017 were used to extract NDVI values. The NDVI values calculated from the satellite image of the year 2001 ranges from 0.62 to -0.41 and that of the year 2017 shows a significant change across the whole region and its value ranges from 0.53 to -0.10 based upon their spectral signature .This technique is also  used for the mapping of changes in land use  and land cover.  NDVI method is applied according to its characteristic like vegetation at different NDVI threshold values such as -0.1, -0.09, 0.14, 0.06, 0.28, 0.35, and 0.5. The NDVI values were initially computed using the Natural Breaks (Jenks) method to classify NDVI map. Results confirmed that the area without vegetation, such as water bodies, as well as built up areas and barren lands, increased from 35 % in 2001 to 39.67 % in 2017.Key words: Normalized Difference Vegetation Index,land use/landcover, spectral signature 


2020 ◽  
Vol 32 (2) ◽  
pp. 269-277
Author(s):  
Jisheng Xia ◽  
Pinliang Dong ◽  
Zhifang Zhao

A variety of factors are involved in inter-city transportation route selection in the areas of complex terrain. With the help of Geographic Information System (GIS), three quantitative methods were employed to determine the transport routes between 44 cities in Northern Yunnan (China), an area with alpine valleys, Karst mountains, and plateau basins. The network analysis in GIS was used to find the routes based on the Transport Suitability Evaluation (TSE) map, which was produced from several factors, including population density, terrain slope, vertical terrain dissection, landslide and mud-flock area, land cover types, and Normalized Difference Vegetation Index (NDVI). Analytic Hierarchy Process (AHP), Grey Relational Analysis (GRA), and Delphi analysis were used to collect and calculate suitability values of these factors. Finally, all the routes connecting 44 cities of Northern Yunnan formed a network which could provide reference for route selection planning in the area.  


Sign in / Sign up

Export Citation Format

Share Document