Interannual Variability of the South-eastern Mediterranean Catch and its Relation to Hydrographical and Air-Temperature Anomalies

2013 ◽  
Vol 24 (1) ◽  
pp. 43-54
Author(s):  
T. El-Geziry ◽  
I. Maiyza ◽  
S. Abdel-Hafez ◽  
Sh. Maiyza ◽  
M. Kamel
2021 ◽  
Vol 48 ◽  
pp. 101986
Author(s):  
Muhammad Shafeeque ◽  
Grinson George ◽  
S. Akash ◽  
B.R. Smitha ◽  
Phiros Shah ◽  
...  

2020 ◽  
Vol 101-102 (3-4) ◽  
pp. 19-25
Author(s):  
Olena Nashmudinova

Regional climate change in Ukraine in recent decades is accompanied by an increase in the repetitiveness of intense waves, both heat and cold; there is a tendency to increase the frequency of warm winters, but sometimes there are periods with significant decreases in temperature. The aim of the study is to determine the specifics of the formation of air temperature anomalies in the cold period 2010–2019. According to the distribution of the average monthly air temperature at the stations Odessa, Kiev, Kharkiv, Lviv investigated positive and negative deviations from the climate norm. In January, the average monthly air temperature in most cases was above normal, except for 1–3 years. The maximum positive anomaly was 4–5°C in Kyiv and Lviv (2015), the largest negative deviations were 3.8°C. In February, the trend continues – only 2–3 years with negative anomalies, the largest deviations to 3–6°C in 2011 and 2012, and positive deviations maximum in 2016. In March, negative temperature anomalies were observed 3–4 years, with a maximum of 2–3°C in 2018, positive anomalies in 4–6°C were observed in 2014, 2017. Temperatures in November were variable, with the prevailing positive anomaly, a high of 6–8°C in 2010. The distribution of air temperature in December was characterized by positive deviations of a maximum of 5–6°C in 2011, 2015, 2017 and 2019. Months of the greatest positive and negative air temperature anomalies over Europe have been highlighted. Among the colder months, the biggest anomaly stood out in January 2010 and February 2012 to 5–6°C. Among the warm months, the temperature anomaly was observed in February 2016, positive deviations from the norm to 8°C. Heat waves formed in winter with a zonal type of circulation, when warm moist air from the Atlantic shifted across the periphery of the Icelandic low. In March, waves of heat formed in low–gradient fields. Powerful waves of cold over the European sector were mainly formed under the influence of “eastern processes” in the spread of the Siberian anticyclone to Europe. In some years, significant cooling over Ukraine is formed in cyclonic systems with a high–altitude thermobaric field characterized by polar or ultrapolar hollow.


2008 ◽  
Vol 14 ◽  
pp. 243-249 ◽  
Author(s):  
J. Kyselý ◽  
R. Huth

Abstract. Heat waves are among natural hazards with the most severe consequences for human society, including pronounced mortality impacts in mid-latitudes. Recent studies have hypothesized that the enhanced persistence of atmospheric circulation may affect surface climatic extremes, mainly the frequency and severity of heat waves. In this paper we examine relationships between the persistence of the Hess-Brezowsky circulation types conducive to summer heat waves and air temperature anomalies at stations over most of the European continent. We also evaluate differences between temperature anomalies during late and early stages of warm circulation types in all seasons. Results show that more persistent circulation patterns tend to enhance the severity of heat waves and support more pronounced temperature anomalies. Recent sharply rising trends in positive temperature extremes over Europe may be related to the greater persistence of the circulation types, and if similar changes towards enhanced persistence affect other mid-latitudinal regions, analogous consequences and implications for temperature extremes may be expected.


Sign in / Sign up

Export Citation Format

Share Document