scholarly journals Convection Heat Transfer of MgO-Ag /Water Magneto-Hybrid Nanoliquid Flow into a Special Porous Enclosure

Author(s):  
Fateh Mebarek Oudina ◽  
◽  
Fares Redouane ◽  
Choudhari Rajashekhar ◽  
◽  
...  

This work explores numerically a computational study of free convection in a grooved porous enclosure filled with water-based hybrid-nanoliquid in the presence of an external magnetic field. To solve the governing equations of the problem, the Galerkin finite element technique is utilized. For a several governing parameters such as Rayleigh number (102≤Ra ≤106), magnetic field parameter (0≤Ha≤100), Darcy number (10-2≤ Da ≤10-4) the results are obtained and discussed via streamlines, isotherms and average Nusselt number. The magnetic field has a good regulating effect for the fluid flow and the heat transfer in porous media

2020 ◽  
Vol 92 (1) ◽  
pp. 10904 ◽  
Author(s):  
Rabeh Slimani ◽  
Abderrahmane Aissa ◽  
Fateh Mebarek-Oudina ◽  
Umair Khan ◽  
M. Sahnoun ◽  
...  

The current study investigates MHD natural convection heat transfer of a hybrid nanofluid in a truncated cone along with transparent domains having the stimulus of an inherent constant magnetic field. The governing equations subject to the physical boundary conditions are solved numerically by using the Galerkin finite element method. The effects of the various parameters involved in the problem such as the Rayleigh number Ra (ranging between 103 and 106), the Hartmann number Ha (ranging between 0 and 60), and the porosity ratio ε (0.1–0.9) are examined. Moreover, the effects of Da which represents the Darcy number (between 10‑3 and 10‑1) and the volume fraction of nanoparticles ϕ for the dissipated nanoparticles of Al2O3-Cu are reported in terms of the streamlines and isotherms distributions as well as the Nusselt number. Such parameters are critical control parameters for both the fluid flow and the rate of heat transfer of the natural convection in the annular space. The solution outcomes proof that the average Nusselt number varies directly with the dynamic field flowing through a porous media, whereas it behaves inversely with the magnetic field.


2016 ◽  
Vol 8 (2) ◽  
pp. 279-292
Author(s):  
H. Saleh ◽  
I. Hashim

AbstractMagnetohydrodynamic natural convection heat transfer in a rotating, differentially heated enclosure is studied numerically in this article. The governing equations are in velocity, pressure and temperature formulation and solved using the staggered grid arrangement together with MAC method. The governing parameters considered are the Hartmann number, 0≤Ha≤70, the inclination angle of the magnetic field, 0°≤θ 90°, the Taylor number, 8.9 x 104≤Ta≤1.1 x 106 and the centrifugal force is smaller than the Coriolis force and the both forces were kept below the buoyancy force. It is found that a sufficiently large Lorentz force neutralizes the effect of buoyancy, inertial and Coriolis forces. Horizontal or vertical direction of the magnetic field was most effective in reducing the global heat transfer.


Author(s):  
Subramanian Muthukumar ◽  
Selvaraj Sureshkumar ◽  
Arthanari Malleswaran ◽  
Murugan Muthtamilselvan ◽  
Eswari Prem

Abstract A numerical investigation on the effects of uniform and non-uniform heating of bottom wall on mixed convective heat transfer in a square porous chamber filled with nanofluid in the appearance of magnetic field is carried out. Uniform or sinusoidal heat source is fixed at the bottom wall. The top wall moves in either positive or negative direction with a constant cold temperature. The vertical sidewalls are thermally insulated. The finite volume approach based on SIMPLE algorithm is followed for solving the governing equations. The different parameters connected with this study are Richardson number (0.01 ≤ Ri ≤ 100), Darcy number (10−4 ≤ Da ≤ 10−1), Hartmann number (0 ≤ Ha ≤ 70), and the solid volume fraction (0.00 ≤ χ ≤ 0.06). The results are presented graphically in the form of isotherms, streamlines, mid-plane velocities, and Nusselt numbers for the various combinations of the considered parameters. It is observed that the overall heat transfer rate is low at Ri = 100 in the positive direction of lid movement, whereas it is low at Ri = 1 in the negative direction. The average Nusselt number is lowered on growing Hartmann number for all considered moving directions of top wall with non-uniform heating. The low permeability, Da = 10−4 keeps the flow pattern same dominating the magnetic field, whereas magnetic field strongly affects the flow pattern dominating the high Darcy number Da = 10−1. The heat transfer rate increases on enhancing the solid volume fraction regardless of the magnetic field.


2016 ◽  
Vol 26 (5) ◽  
pp. 1416-1432 ◽  
Author(s):  
Saman Rashidi ◽  
Javad Abolfazli Esfahani ◽  
Mohammad Sadegh Valipour ◽  
Masoud Bovand ◽  
Ioan Pop

Purpose – The analysis of the flow field and heat transfer around a tube row or tube banks wrapped with porous layer have many related engineering applications. Examples include the reactor safety analysis, combustion, compact heat exchangers, solar power collectors, high-performance insulation for buildings and many another applications. The purpose of this paper is to perform a numerical study on flows passing through two circular cylinders in side-by-side arrangement wrapped with a porous layer under the influence of a magnetic field. The authors focus the attention to the effects of magnetic field, Darcy number and pitch ratio on the mechanism of convection heat transfer and flow structures. Design/methodology/approach – The Darcy-Brinkman-Forchheimer model for simulating the flow in porous medium along with the Maxwell equations for providing the coupling between the flow field and the magnetic field have been used. Equations with the relevant boundary conditions are numerically solved using a finite volume approach. In this study, Stuart and Darcy numbers are varied within the range of 0 < N < 3 and 1e-6 < Da < 1e-2, respectively, and Reynolds and Prandtl numbers are equal to Re=100 and Pr=0.71, respectively. Findings – The results show that the drag coefficient decreases for N < 0.6 and increases for N > 0.6. Also, the effect of magnetic field is negligible in the gap between two cylinders because the magnetic field for two cylinders counteracts each other in these regions. Originality/value – To the authors knowledge, in the open literature, flow passing over two circular cylinders in side-by-side arrangement wrapped with a porous layer has been rarely investigated especially under the influence of a magnetic field.


In this chapter, the non-Darcy model is employed for porous media filled with nanofluid. Both natural and forced convection heat transfer can be analyzed with this model. The governing equations in forms of vorticity stream function are derived and then they are solved via control volume-based finite element method (CVFEM). The effect of Darcy number on nanofluid flow and heat transfer is examined.


2019 ◽  
Vol 29 (11) ◽  
pp. 4349-4376 ◽  
Author(s):  
Mohammad Ghalambaz ◽  
Mahmoud Sabour ◽  
Ioan Pop ◽  
Dongsheng Wen

Purpose The present study aims to address the flow and heat transfer of MgO-MWCNTs/EG hybrid nanofluid in a complex shape enclosure filled with a porous medium. The enclosure is subject to a uniform inclined magnetic field and radiation effects. The effect of the presence of a variable magnetic field on the natural convection heat transfer of hybrid nanofluids in a complex shape cavity is studied for the first time. The geometry of the cavity is an annular space with an isothermal wavy outer cold wall. Two types of the porous medium, glass ball and aluminum metal foam, are adopted for the porous space. The governing equations for mass, momentum and heat transfer of the hybrid nanofluid are introduced and transformed into non-dimensional form. The actual available thermal conductivity and dynamic viscosity data for the hybrid nanofluid are directly used for thermophysical properties of the hybrid nanofluid. Design/methodology/approach The governing equations for mass, momentum and heat transfer of hybrid nanofluid are introduced and transformed into non-dimensional form. The thermal conductivity and dynamic viscosity of the nanofluid are directly used from the experimental results available in the literature. The finite element method is used to solve the governing equations. Grid check procedure and validations were performed. Findings The effect of Hartmann number, Rayleigh number, Darcy number, the shape of the cavity and the type of porous medium on the thermal performance of the cavity are studied. The outcomes show that using the composite nanoparticles boosts the convective heat transfer. However, the rise of the volume fraction of nanoparticles would reduce the overall enhancement. Considering a convective dominant regime of natural convection flow with Rayleigh number of 107, the maximum enhancement ratio (Nusselt number ratio compared to the pure fluid) for the case of glass ball is about 1.17 and for the case of aluminum metal foam is about 1.15 when the volume fraction of hybrid nanoparticles is minimum as 0.2 per cent. Originality/value The effect of the presence of a variable magnetic field on the natural convection heat transfer of a new type of hybrid nanofluids, MgO-MWCNTs/EG, in a complex shape cavity is studied for the first time. The results of this paper are new and original with many practical applications of hybrid nanofluids in the modern industry.


2021 ◽  
Vol 11 (4) ◽  
pp. 1722
Author(s):  
Nidal Abu-Libdeh ◽  
Fares Redouane ◽  
Abderrahmane Aissa ◽  
Fateh Mebarek-Oudina ◽  
Ahmad Almuhtady ◽  
...  

In this study, a new cavity form filled under a constant magnetic field by Ag/MgO/H2O nanofluids and porous media consistent with natural convection and total entropy is examined. The nanofluid flow is considered to be laminar and incompressible, while the advection inertia effect in the porous layer is taken into account by adopting the Darcy–Forchheimer model. The problem is explained in the dimensionless form of the governing equations and solved by the finite element method. The results of the values of Darcy (Da), Hartmann (Ha) and Rayleigh (Ra) numbers, porosity (εp), and the properties of solid volume fraction (ϕ) and flow fields were studied. The findings show that with each improvement in the Ha number, the heat transfer rate becomes more limited, and thus the magnetic field can be used as an outstanding heat transfer controller.


2021 ◽  
Vol 39 (3) ◽  
pp. 876-884
Author(s):  
Jino Lawrence ◽  
Vanav Kumar Alagarsamy

The involvement of non-linear convection effects in a natural convective fluid flow and heat transfer along with the effects of magnetic field in a porous cavity is studied numerically. Cu-water filled cavity of higher temperature at the left wall and lower temperature at the right wall. The governing equations are organized to achieve the required flow by using two-dimensional equations of energy, continuity and momentum. Vorticity-stream function based dimensionless equations are solved using the finite difference techniques. The results are discussed for various dimensionless parameters such as the Darcy number, non-linear convection parameter, Hartmann number, Rayleigh number and solid volume fraction of the nanoparticles. An augment in streamline velocity and convection heat transfer are observed by increasing the Rayleigh number, non-linear convection parameter and Darcy number. The non-linear convection parameter has a lesser effect on the lower Rayleigh numbers. Diminished streamline intensity and reduction in convection heat transfer are noted for an increase in the strength of the applied magnetic field irrespective of the non-linear convection parameter.


Sign in / Sign up

Export Citation Format

Share Document