scholarly journals Saharan Dust Events over the Valencian Community (Eastern Iberian Peninsula): Synoptic Circulation Patterns and Contribution to PM10 Levels

2020 ◽  
Vol 20 (11) ◽  
pp. 2519-2528
Author(s):  
Ariadna Huerta-Viso ◽  
Javier Crespo ◽  
Nuria Galindo ◽  
Eduardo Yubero ◽  
Jose Francisco Nicolás
Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1469
Author(s):  
Alba López-Caravaca ◽  
Ramón Castañer ◽  
Alvaro Clemente ◽  
Eduardo Yubero ◽  
Nuria Galindo ◽  
...  

The influence of three Saharan dust events (SDE) on particulate matter (PM) concentrations and aerosol optical properties (AOP) during February 2021 was studied. The physical characteristics of the African aerosol were different for each episode. Therefore, the impacts of the three events on PM and AOP were analyzed separately. The monitoring sites were placed in Elche, in the southeast of the Iberian Peninsula. The sites can be classified as urban background locations. The procedure used to obtain the contribution of SDE to PM10 mass concentrations was the 40th percentile method. Nearly half of the days during the study period were under the influence of Saharan air masses. The average contribution of mineral dust (MD) to the PM10 mean concentration was ~50%, which was the highest contribution during the month of February in the last 14 years. The results show that those events characterized by a high input of fine particles (PM1 and PM2.5) caused larger increases in the absorption (σap) and scattering (σsp) coefficients than SDE in which coarse particles predominated. Nevertheless, as expected, SAE (Scattering Angström Exponent) values were lowest during these episodes. AAE (Absorption Angström Exponent) values during SDE were slightly higher than those observed in the absence of African dust, suggesting some contribution from MD to the absorption process.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Andrés Merino ◽  
Sergio Fernández ◽  
Lucía Hermida ◽  
Laura López ◽  
José Luis Sánchez ◽  
...  

In recent decades, a decrease in snowfall attributed to the effects of global warming (among other causes) has become evident. However, it is reasonable to investigate meteorological causes for such decrease, by analyzing changes in synoptic scale patterns. On the Iberian Peninsula, the Castilla y León region in the northwest consists of a central plateau surrounded by mountain ranges. This creates snowfalls that are considered both an important water resource and a transportation risk. In this work, we develop a classification of synoptic situations that produced important snowfalls at observation stations in the major cities of Castilla y León from 1960 to 2011. We used principal component analysis (PCA) and cluster techniques to define four synoptic patterns conducive to snowfall in the region. Once we confirmed homogeneity of the series and serial correlation of the snowfallday records at the stations from 1960 to 2011, we carried out a Mann-Kendall test. The results show a negative trend at most stations, so there are a decreased number of snowfall days. Finally, variations in these meteorological variables were related to changes in the frequencies of snow events belonging to each synoptic pattern favorable for snowfall production at the observatory locations.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
György Varga ◽  
Pavla Dagsson-Walhauserová ◽  
Fruzsina Gresina ◽  
Agusta Helgadottir

AbstractMineral dust emissions from Saharan sources have an impact on the atmospheric environment and sedimentary units in distant regions. Here, we present the first systematic observations of long-range Saharan dust transport towards Iceland. Fifteen Saharan dust episodes were identified to have occurred between 2008 and 2020 based on aerosol optical depth data, backward trajectories and numerical models. Icelandic samples from the local dust sources were compared with deposited dust from two severe Saharan dust events in terms of their granulometric and mineralogical characteristics. The episodes were associated with enhanced meridional atmospheric flow patterns driven by unusual meandering jets. Strong winds were able to carry large Saharan quartz particles (> 100 µm) towards Iceland. Our results confirm the atmospheric pathways of Saharan dust towards the Arctic, and identify new northward meridional long-ranged transport of giant dust particles from the Sahara, including the first evidence of their deposition in Iceland as previously predicted by models.


2016 ◽  
Vol 9 (2) ◽  
pp. 765-777 ◽  
Author(s):  
Bernd Heinold ◽  
Ina Tegen ◽  
Kerstin Schepanski ◽  
Jamie R. Banks

Abstract. In the aerosol–climate model ECHAM6-HAM2, dust source activation (DSA) observations from Meteosat Second Generation (MSG) satellite are proposed to replace the original source area parameterization over the Sahara Desert. The new setup is tested in nudged simulations for the period 2007 to 2008. The evaluation is based on comparisons to dust emission events inferred from MSG dust index imagery, Aerosol Robotic Network (AERONET) sun photometer observations, and satellite retrievals of aerosol optical thickness (AOT).The model results agree well with AERONET measurements especially in terms of seasonal variability, and a good spatial correlation was found between model results and MSG-SEVIRI (Spinning-Enhanced Visible and InfraRed Imager) dust AOT as well as Multi-angle Imaging SpectroRadiometer (MISR) AOT. ECHAM6-HAM2 computes a more realistic geographical distribution and up to 20 % higher annual Saharan dust emissions, using the MSG-based source map. The representation of dust AOT is partly improved in the southern Sahara and Sahel. In addition, the spatial variability is increased towards a better agreement with observations depending on the season. Thus, using the MSG DSA map can help to circumvent the issue of uncertain soil input parameters.An important issue remains the need to improve the model representation of moist convection and stable nighttime conditions. Compared to sub-daily DSA information from MSG-SEVIRI and results from a regional model, ECHAM6-HAM2 notably underestimates the important fraction of morning dust events by the breakdown of the nocturnal low-level jet, while a major contribution is from afternoon-to-evening emissions.


1993 ◽  
Vol 29 (10) ◽  
pp. 3303-3315 ◽  
Author(s):  
James P. Hughes ◽  
Dennis P. Lettenmaier ◽  
Peter Guttorp

2011 ◽  
Vol 11 (7) ◽  
pp. 3067-3091 ◽  
Author(s):  
C. Córdoba-Jabonero ◽  
M. Sorribas ◽  
J. L. Guerrero-Rascado ◽  
J. A. Adame ◽  
Y. Hernández ◽  
...  

Abstract. The synergetic use of meteorological information, remote sensing both ground-based active (lidar) and passive (sun-photometry) techniques together with backtrajectory analysis and in-situ measurements is devoted to the characterization of dust intrusions. A case study of air masses advected from the Saharan region to the Canary Islands and the Iberian Peninsula, located relatively close and far away from the dust sources, respectively, was considered for this purpose. The observations were performed over three Spanish geographically strategic stations within the dust-influenced area along a common dust plume pathway monitored from 11 to 19 of March 2008. A 4-day long dust event (13–16 March) over the Santa Cruz de Tenerife Observatory (SCO), and a linked short 1-day dust episode (14 March) in the Southern Iberian Peninsula over the Atmospheric Sounding Station "El Arenosillo" (ARN) and the Granada station (GRA) were detected. Meteorological conditions favoured the dust plume transport over the area under study. Backtrajectory analysis clearly revealed the Saharan region as the source of the dust intrusion. Under the Saharan air masses influence, AERONET Aerosol Optical Depth at 500 nm (AOD500) ranged from 0.3 to 0.6 and Ångström Exponent at 440/675 nm wavelength pair (AE440/675) was lower than 0.5, indicating a high loading and predominance of coarse particles during those dusty events. Lidar observations characterized their vertical layering structure, identifying different aerosol contributions depending on altitude. In particular, the 3-km height dust layer transported from the Saharan region and observed over SCO site was later on detected at ARN and GRA stations. No significant differences were found in the lidar (extinction-to-backscatter) ratio (LR) estimation for that dust plume over all stations when a suitable aerosol scenario for lidar data retrieval is selected. Lidar-retrieved LR values of 60–70 sr were obtained during the main dust episodes. These similar LR values found in all the stations suggest that dust properties were kept nearly unchanged in the course of its medium-range transport. In addition, the potential impact on surface of that Saharan dust intrusion over the Iberian Peninsula was evaluated by means of ground-level in-situ measurements for particle deposition assessment together with backtrajectory analysis. However, no connection between those dust plumes and the particle sedimentation registered at ground level is found. Differences on particle deposition processes observed in both Southern Iberian Peninsula sites are due to the particular dust transport pattern occurred over each station. Discrepancies between columnar-integrated and ground-level in-situ measurements show a clear dependence on height of the dust particle size distribution. Then, further vertical size-resolved observations are needed for evaluation of the impact on surface of the Saharan dust arrival to the Iberian Peninsula.


2011 ◽  
Vol 26 (2) ◽  
pp. 236-242 ◽  
Author(s):  
A. F. Stein ◽  
Y. Wang ◽  
J. D. de la Rosa ◽  
A. M. Sanchez de la Campa ◽  
Nuria Castell ◽  
...  

Abstract The Hybrid Single-Particle Lagrangian Integrated Trajectories (HYSPLIT) model has been applied to calculate the spatial and temporal distributions of dust originating from North Africa. The model has been configured to forecast hourly particulate matter ≤10 μm (PM10) dust concentrations focusing on the impacts over the southern Iberian Peninsula. Two full years (2008 and 2009) have been simulated and compared against surface background measurement sites. A statistical analysis using discrete and categorical evaluations is presented. The model is capable of simulating the occurrence of Saharan dust episodes as observed at the measurement stations and captures the generally higher levels observed in eastern Andalusia, Spain, with respect to the western Andalusia station. But the simulation tends to underpredict the magnitude of the dust concentration peaks. The model has also been qualitatively compared with satellite data, showing generally good agreement in the spatial distribution of the dust column.


Sign in / Sign up

Export Citation Format

Share Document