scholarly journals A Study of the Correlation between the Concentration of Particulate Matter and Green Area Ratio Measured through a Portable Monitoring System: With Particular Focus on the Case of Dalseo-Gu, Daegu Metropolitan City

2022 ◽  
Vol 13 (01) ◽  
pp. 84-96
Author(s):  
Kyungsu Son ◽  
Sanghun Baek ◽  
Eungho Jung ◽  
Daewuk Kim
SLEEP ◽  
2009 ◽  
Vol 32 (5) ◽  
pp. 629-636 ◽  
Author(s):  
Rogerio Santos-Silva ◽  
Denis E. Sartori ◽  
Viviane Truksinas ◽  
Eveli Truksinas ◽  
Fabiana F. F. D Alonso ◽  
...  

2020 ◽  
Vol 17 (3) ◽  
pp. 867-890
Author(s):  
Jun-Hee Choi ◽  
Hyun-Sug Cho

The gravimetric method, which is mainly used among particulate matter (PM) measurement methods, includes the disadvantages that it cannot measure PM in real time and it requires expensive equipment. To overcome these disadvantages, we have developed a light scattering type PM sensor that can be manufactured at low cost and can measure PM in real time. We have built a big data system that can systematically store and analyze the data collected through the developed sensor, as well as an environment where PM states can be monitored mobile in real time using such data. In addition, additional studies were conducted to analyze and correct the collected big data to overcome the problem of low accuracy, which is a disadvantage of the light scattering type PM sensor. We used a linear correction method and proceeded to adopt the most suitable value based on error and accuracy.


Author(s):  
Nimra Kanwal ◽  
Nuhzat Khan

Buildings are the most important part of development activities, consumed over one-thirds of the global energy. Household used the maximum energy around the world, likewise in Pakistan residential buildings consumed about half of total energy (45.9% per year). The study aims to analyze the impact of building design on climate of Metropolitan City Karachi, Pakistan and to evaluate the change in urbanization patterns and energy consumption in the buildings. To have better understanding of the issues correlations was established amongst population, urbanization patterns, green area, number of buildings (residential and commercial), building design, energy consumption and metrological records (climate change parameters) by collecting the data from the respective departments. With the help of the collected data amount of carbon dioxide was estimated. The results reveled that during last 36 years the urban population of Karachi increased exponentially from 5,208,000 (1981) to 14,737,257 (2017) with increase in urbanized area from 8.35 km2 (1946) to 3,640 km2 (2017) that may led to reduce the green area of the city from 495,000 hectors (1971) to 100,000 hectors (2015). Moreover, the building’s design and numbers are being changed from 21 high-rise buildings (2009) to 344 (2017). It may be concluded that change in temperature pattern and climatic variability of the city may be due to increase in population and change in lifestyle that lead to high energy consumption that is prime source of increased in CO2 emission in the environment of Karachi city, However, Greenhouse Gases (GHG) releases are much lower than the levels reported from metropolitan cities around the world.


2021 ◽  
Author(s):  
Daniele Piazzolla ◽  
Giancarlo Della Ventura ◽  
Andrea Terribili ◽  
Alessandra Conte ◽  
Sergio Scanu ◽  
...  

<p><span>The increase in urbanization requires intense energy consumption and causes an increase in emissions from transportation and industrial sources. As a result, a variety of pollutants are released into the atmosphere with negative effects on the health of organisms and ecosystems as well as on human health. In this perspective, coastal areas are considered "hot</span><span>spot</span><span>s" of environmental contamination since they often host multiple human activities. This issue is particularly dramatic close to important maritime hubs, as a matter of fact overall 25% of the world energy consumption (a major source of pollution) is employed for transport, and over 80% of world trade is carried by sea (Gobbi et al. 2020). </span><span>During 2019-2020 we carried out a continuous monitoring of particulate matter in a fixed station to understand the sources of air pollution in the northern Latium coastal area. This area has been selected for the presence of industrial activities located in a few kilometers of coast (Piazzolla et al. 2020). </span><span>The amount and typology of solid particles present in the environment have been assessed by implementing a reliable cost-effective device (Gozzi et al. 2015, 2017) which integrates an optical particle counter and a filtering set-up able to collect particulate matter with dimension > 400 nm (Della Ventura et al. 2017). Filters were periodically removed from the device and recovered microparticles were subjected to microscopic (optical and electron), spectroscopic (IR, Raman), and microchemical (SEM-EDS) characterization. Results were related to the wind speed and direction measured by</span><span> the </span>Civitavecchia Coastal Environment Monitoring System<span> (</span><span>Bonamano et al. 2015), allowing an evaluation of the contribution of anthropic (industrial and maritime) activities to the pollution in this area.</span></p><p>Bonamano S., Piermattei V., Madonia A., Mendoza F., Pierattini A., Martellucci R., ... <span>& Marcelli M. (2016). The Civitavecchia Coastal Environment Monitoring System (C-CEMS): a new tool to analyze the conflicts between coastal pressures and sensitivity areas. Ocean Science, 12(1).</span><span> DOI 10.5194/os-12-87-2016</span></p><p><span>Della Ventura G., Gozzi F., Marcelli A. (2017) The MIAMI project: design and testing of an IoT lowcost device for mobile monitoring of PM and gaseous pollutants. Superstripe Press, Science Series, 12, 41-44, ISBN 9788866830764</span></p><p>Gobbi G.P., Di Liberto L., Barnaba F. (2020). <span>Impact of port emissions on Eu-regulated and non-regulated air quality indicators: the case of Civitavecchia (Italy). Science of the Total environment, 719. DOI 10.1016/j.scitotenv.2019.134984 </span></p><p><span>Gozzi, F., Della Ventura, G., Marcelli, A. (2015) Mobile monitoring of particulate matter: State of art and perspectives. Atmospheric Pollution Research, 7, 228-234. DOI 10.1016/j.apr.2015.09.007.</span></p><p><span>Gozzi F., Della Ventura G., Marcelli A., Lucci F. (2017) Current status of particulate matter pollution in Europe and future perspectives: a review. Journal of Materials and Environmental Science, 8, 1901-1909. ISSN 2028-2508</span></p><p><span>Piazzolla D., Cafaro V., de Lucia G. A., Mancini E., Scanu S., Bonamano S., ... & Marcelli M. (2020). Microlitter pollution in coastal sediments of the northern Tyrrhenian Sea, Italy: microplastics and fly-ash occurrence and distribution. </span>Estuarine, Coastal and Shelf Science, 106819. DOI 10.1016/j.ecss.2020.106819</p>


2020 ◽  
Vol 12 (1) ◽  
pp. 365 ◽  
Author(s):  
Jou-Man Huang ◽  
Heui-Yung Chang ◽  
Yu-Su Wang

This study took Chiayi City—a tropical, medium-sized city—as an example to investigate the urban heat island (UHI) effect using mobile transects and built environment characteristics in 2018. The findings were compared to those from a study in 1999 to explore the spatiotemporal changes in the built environment characteristics and UHI phenomenon. The result for the UHI intensity (UHII) during the day was approximately 4.1 °C and at midnight was approximately 2.5 °C. Compared with the survey in 1999, the UHII during the day increased by approximately 1.3 °C, and the UHII at midnight decreased by approximately 1.2 °C. The trend of the spatial distribution of the increasing artificial area ratio (AAR) proved the importance of urban land use expansion on UHI. The results of the air temperature survey were incorporated with the nesting space in GIS to explore the role of built environment characteristics in UHI effects. The higher the population density (PD) and artificial area ratio (AAR) were, the closer the proximity was to the downtown area. The green area ratio (GAR) was less than 0.2 in the downtown area and increased closer to the rural areas. The built environment factors were analyzed in detail and correlated with the UHI effect. The air temperature in the daytime increased with the population density (PD) and artificial area ratio (AAR), but decreased with the green area ratio (GAR) (r = ±0.3–0.4). The result showed good agreement with previous studies.


2011 ◽  
Vol 341-342 ◽  
pp. 646-650
Author(s):  
Jing Liu ◽  
Shu Ming Ye ◽  
Hang Chen ◽  
Xuan Wang ◽  
Xiu Quan Fu

Cardiovascular Monitoring[1], which is important evidence used to analyze the therapeutic efficacy, plays a significant role in the operation. A multi-parameter monitoring system is introduced in this paper. The system not only detects initial physiologic signals like photoplethysmographic pulse signal, blood pressure and electrocardiogram signal, but also extracts cardiovascular parameters, including the amplitude of photoplethysmogram, area ratio, pulse beat interval, pulse decay time constant, etc. The operating principle of the system, hardware composition, a flow chart of software module, direction of data flow and algorithm for extracting parameters are introduced. Finally, a validation clinical experiment was undertaken, and results confirmed that the system realized real-time monitoring of cardiovascular parameters, which reflected the variation of cardiovascular system during surgery and could assist doctors with drug administration.


Sign in / Sign up

Export Citation Format

Share Document