scholarly journals Data Migration Need, Strategy, Challenges, Methodology, Categories, Risks, Uses with Cloud Computing, and Improvements in Its Using with Cloud Using Suggested Proposed Model (DMig 1)

2021 ◽  
Vol 12 (01) ◽  
pp. 79-103
Author(s):  
Abou_el_ela Abdou Hussein
10.31355/33 ◽  
2018 ◽  
Vol 2 ◽  
pp. 105-120
Author(s):  
Hamed Motaghi ◽  
Saeed Nosratabadi ◽  
Thabit Qasem Atobishi

NOTE: THIS ARTICLE WAS PUBLISHED WITH THE INFORMING SCIENCE INSTITUTE. Aim/Purpose................................................................................................................................................................................................. The main objective of the current study is to develop a business model for service providers of cloud computing which is designed based on circular economy principles and can ensure the sustainable consumption. Background Even though the demand for cloud computing technology is increasing day by day in all over the world, the current the linear economy principles are incapable to ensure society development needs. To consider the benefit of the society and the vendors at the same time, the principles of circular economy can address this issue. Methodology................................................................................................................................................................................................. An extensive literature review on consumption, sustainable consumption, circular economic, business model, and cloud computing were conducted. the proposed model of Osterwalder, Pigneur and Tucci (2005) is admitted designing the circular business model. Contribution................................................................................................................................................................................................. The proposed model of the study is the contribution of this study where provides the guidelines for the cloud computing service providers to achieve both their economic profits and the society’ needs. Findings Finding reveals that if the cloud computing service providers design their business model based on the “access” principle of circular economy, they can meet their economic profits and the society’ needs at a same time. Recommendations for Practitioners.............................................................................................................................................................. It is recommended to the startup and the existing businesses to utilize the proposed model of this study to reach a sustainable development. Recommendation for Researchers................................................................................................................................................................ It proposes a new circular business model and its linkages with community building. Impact on Society............................................................................................................................................................................................ The proposed model of the study provides guidelines to the cloud computing service providers to design a business model which is able not only to meet their economic profit, but also to meet the society’s and customers’ benefits. Future Research............................................................................................................................................................................................... Future researches can build on this research model which proposed in this study to examine the limitations of this model by using empirical researches.


2021 ◽  
Vol 1099 (1) ◽  
pp. 012082
Author(s):  
G. Madhukar Rao ◽  
K. Srinivas ◽  
Sayyad Samee ◽  
K Venkatesh ◽  
Pankaj Dadheech ◽  
...  

Author(s):  
Junshu Wang ◽  
Guoming Zhang ◽  
Wei Wang ◽  
Ka Zhang ◽  
Yehua Sheng

AbstractWith the rapid development of hospital informatization and Internet medical service in recent years, most hospitals have launched online hospital appointment registration systems to remove patient queues and improve the efficiency of medical services. However, most of the patients lack professional medical knowledge and have no idea of how to choose department when registering. To instruct the patients to seek medical care and register effectively, we proposed CIDRS, an intelligent self-diagnosis and department recommendation framework based on Chinese medical Bidirectional Encoder Representations from Transformers (BERT) in the cloud computing environment. We also established a Chinese BERT model (CHMBERT) trained on a large-scale Chinese medical text corpus. This model was used to optimize self-diagnosis and department recommendation tasks. To solve the limited computing power of terminals, we deployed the proposed framework in a cloud computing environment based on container and micro-service technologies. Real-world medical datasets from hospitals were used in the experiments, and results showed that the proposed model was superior to the traditional deep learning models and other pre-trained language models in terms of performance.


Internet of things (IoT) is an emerging concept which aims to connect billions of devices with each other anytime regardless of their location. Sadly, these IoT devices do not have enough computing resources to process huge amount of data. Therefore, Cloud computing is relied on to provide these resources. However, cloud computing based architecture fails in applications that demand very low and predictable latency, therefore the need for fog computing which is a new paradigm that is regarded as an extension of cloud computing to provide services between end users and the cloud user. Unfortunately, Fog-IoT is confronted with various security and privacy risks and prone to several cyberattacks which is a serious challenge. The purpose of this work is to present security and privacy threats towards Fog-IoT platform and discuss the security and privacy requirements in fog computing. We then proceed to propose an Intrusion Detection System (IDS) model using Standard Deep Neural Network's Back Propagation algorithm (BPDNN) to mitigate intrusions that attack Fog-IoT platform. The experimental Dataset for the proposed model is obtained from the Canadian Institute for Cybersecurity 2017 Dataset. Each instance of the attack in the dataset is separated into separate files, which are DoS (Denial of Service), DDoS (Distributed Denial of Service), Web Attack, Brute Force FTP, Brute Force SSH, Heartbleed, Infiltration and Botnet (Bot Network) Attack. The proposed model is trained using a 3-layer BP-DNN


The targeted malignant emails (TME) for PC arrange misuse have become progressively deceptive and all the more generally common as of late. Aside from spam or phishing which is intended to fool clients into uncovering individual data, TME can misuse PC systems and accumulate touchy data which can be a major issue for the association. They can comprise of facilitated and industrious battles that can be terrible. Another email-separating procedure which depends on bowl classifier and beneficiary arranged highlights with an arbitrary backwoods classifier which performs superior to two conventional recognition techniques, Spam Assassin and Clam AV, while keeping up sensible bogus positive rates. This proposed model deals with how to recognize a pernicious bundle (email) for ordinary system into current system. We build up an undermined protocol of network detection that powerfully concludes the correct number of congestive loss of packets that is going to happen. On the chance that one damages the steering convention itself, at that point aggressor may make enormous segments of the system become untreatable. We build up an option shifting technique by utilizing TME explicit element extraction. Our conventions naturally anticipate clog in a deliberate manner, as it is vital in making any such flaw in network recognition reasonable.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Amr M. Sauber ◽  
Passent M. El-Kafrawy ◽  
Amr F. Shawish ◽  
Mohamed A. Amin ◽  
Ismail M. Hagag

The main goal of any data storage model on the cloud is accessing data in an easy way without risking its security. A security consideration is a major aspect in any cloud data storage model to provide safety and efficiency. In this paper, we propose a secure data protection model over the cloud. The proposed model presents a solution to some security issues of cloud such as data protection from any violations and protection from a fake authorized identity user, which adversely affects the security of the cloud. This paper includes multiple issues and challenges with cloud computing that impairs security and privacy of data. It presents the threats and attacks that affect data residing in the cloud. Our proposed model provides the benefits and effectiveness of security in cloud computing such as enhancement of the encryption of data in the cloud. It provides security and scalability of data sharing for users on the cloud computing. Our model achieves the security functions over cloud computing such as identification and authentication, authorization, and encryption. Also, this model protects the system from any fake data owner who enters malicious information that may destroy the main goal of cloud services. We develop the one-time password (OTP) as a logging technique and uploading technique to protect users and data owners from any fake unauthorized access to the cloud. We implement our model using a simulation of the model called Next Generation Secure Cloud Server (NG-Cloud). These results increase the security protection techniques for end user and data owner from fake user and fake data owner in the cloud.


2021 ◽  
Vol 9 (1) ◽  
pp. 41-50
Author(s):  
Ruhul Amin ◽  
Siddhartha Vadlamudi

Cloud data migration is the process of moving data, localhost applications, services, and data to the distributed cloud processing framework. The success of this data migration measure is relying upon a few viewpoints like planning and impact analysis of existing enterprise systems. Quite possibly the most widely recognized process is moving locally stored data in a public cloud computing environment. Cloud migration comes along with both challenges and advantages, so there are different academic research and technical applications on data migration to the cloud that will be discussed throughout this paper. By breaking down the research achievement and application status, we divide the existing migration techniques into three strategies as indicated by the cloud service models essentially. Various processes should be considered for different migration techniques, and various tasks will be included accordingly. The similarities and differences between the migration strategies are examined, and the challenges and future work about data migration to the cloud are proposed. This paper, through a research survey, recognizes the key benefits and challenges of migrating data into the cloud. There are different cloud migration procedures and models recommended to assess the presentation, identifying security requirements, choosing a cloud provider, calculating the expense, and making any essential organizational changes. The results of this research paper can give a roadmap for data migration and can help decision-makers towards a secure and productive migration to a cloud computing environment.


2021 ◽  
Vol 11 (3) ◽  
pp. 19-32
Author(s):  
Shahin Fatima ◽  
Shish Ahmad

Cloud computing has become a feasible solution for virtualization of cloud resources. Although it has many prospective to hold individuals by providing many benefits to organizations, still there are security loopholes to outsource data. To ensure the ‘security' of data in cloud computing, quantum key cryptography is introduced. Quantum cryptography makes use of quantum mechanics and qubits. The proposed method made use of quantum key distribution with Kerberos to secure the data on the cloud. The paper discussed the model for quantum key distribution which makes use of Kerberos ticket distribution center for authentication of cloud service providers. The proposed model is compared with quantum key distribution and provides faster computation by producing less error rate.


Sign in / Sign up

Export Citation Format

Share Document