scholarly journals A Study on the Effects of Solar Tracking Systems on the Performance of Photovoltaic Power Plants

2014 ◽  
Vol 02 (04) ◽  
pp. 718-728 ◽  
Author(s):  
Shahriar Bazyari ◽  
Reza Keypour ◽  
Shahrokh Farhangi ◽  
Amir Ghaedi ◽  
Khashayar Bazyari

The paper presents a classification of solar tracking systems used in photovoltaic power stations (PVS) and their operating principles. A simulation model of a grid-connected 5-kW PVS has been developed in PVsyst, to which end the researchers selected PVS equipment and optimized the PV cell tilt angles. The paper further analyzes a grid-connected PVS in Orenburg Oblast in PVsyst under the following configurations: static PV cells, not tilted vs seasonally varied tilts; single-axis solar trackers with vertical and horizontal axes of rotation vs a dual-axis solar tracker. The analysis is based on solar insolation data for 2019 obtained from the research team’s HP-2000 weather station. Dual-axis solar tracker and single-axis vertical trackers are shown to have the best year-round generation, providing an increase of 13.2% and 11.5%, respectively, against the static PV cells (no change in tilt).


2021 ◽  
Vol 249 ◽  
pp. 427-440
Author(s):  
Yaroslav Shklyarskiy ◽  
Daniel Díaz Guerra ◽  
Emiliia Iakovleva ◽  
Anton Rassõlkin

Cuba is traditionally considered a country with an underdeveloped industry. The share of the mining and metallurgical industries in the gross industrial production of the republic is small – about 3 % of GDP. The development of deposits and the extraction of nickel ores is an important sector of the economy of the Republic of Cuba, since the largest reserves of nickel and cobalt on the North American continent are located on the territory of the country. The development of the country energy system can serve as a growth factor in this sector of the economy. Due to climatic features and impossibility of integrating new capacities into the energy system through the construction of hydroelectric power plants, solar energy is a promising direction. Determining the feasibility of using solar tracking systems to increase the generation of electricity from solar power plants is one of the main challenges faced by engineers and renewable energy specialists. Currently, there are no solar tracking systems in Cuba that can provide information to assess the effectiveness of this technology in the country. The lack of the necessary technologies, as well as the high cost of developing solar power plants with tracking systems, limit the widespread introduction of such complexes. Hence follows the task of creating an inexpensive experimental model that allows assessing the effectiveness of tracking systems in specific weather conditions of the Republic of Cuba. This model will allow in future to increase the efficiency of electrical complexes with solar power plants, which provide power supply to the objects of the mineral resource complex and other regions.


2020 ◽  
Author(s):  
Lucas Feksa Ramos ◽  
Luciane N. Canha ◽  
Emanuel Antunes Vieira ◽  
Mauren P. C. Silva ◽  
Carlos A. T. Carvalho Jr.

The diversity of the energy matrix in the world is one of the challenges demanding fornew researches with alternative energy sources to bring exibility and sustainability in their use.According with this panorama, the generation of electric energy with solar photovoltaic systemsemerges as an important goal, and its technology is constantly advancing as an immediatesolution for this quest of diversity. This paper presents a predictive control for a solar trackingalgorithm to be used in single or double axis photovoltaic systems. The main characteristicand contribution of this algorithm represents a functional technological innovation because itdoes not use any sensors to determine the position of the Sun with respect to the panel. Suchalgorithm avoids unnecessary movements in cases of shadows on the panels caused by clouds,or some animal that could interfere on systems using the conventional sensors. The proposedsolar time algorithm was tested and compared with eld values, predicting the correct Sunposition with accuracy of less than 1o. The qualitative and quantitative results presented hereevidenced the real gain of the proposed algorithm-based system without any sensors to increasethe generation gain of photovoltaic power plants.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Tekai Eddine Khalil Zidane ◽  
Mohd Rafi Adzman ◽  
Mohammad Faridun Naim Tajuddin ◽  
Samila Mat Zali ◽  
Ali Durusu ◽  
...  

2021 ◽  
Vol 1878 (1) ◽  
pp. 012015
Author(s):  
T E K Zidane ◽  
S M Zali ◽  
M R Adzman ◽  
M F N Tajuddin ◽  
A Durusu

2021 ◽  
Vol 11 (11) ◽  
pp. 5025
Author(s):  
David González-Peña ◽  
Ignacio García-Ruiz ◽  
Montserrat Díez-Mediavilla ◽  
Mª. Isabel Dieste-Velasco ◽  
Cristina Alonso-Tristán

Prediction of energy production is crucial for the design and installation of PV plants. In this study, five free and commercial software tools to predict photovoltaic energy production are evaluated: RETScreen, Solar Advisor Model (SAM), PVGIS, PVSyst, and PV*SOL. The evaluation involves a comparison of monthly and annually predicted data on energy supplied to the national grid with real field data collected from three real PV plants. All the systems, located in Castile and Leon (Spain), have three different tilting systems: fixed mounting, horizontal-axis tracking, and dual-axis tracking. The last 12 years of operating data, from 2008 to 2020, are used in the evaluation. Although the commercial software tools were easier to use and their installations could be described in detail, their results were not appreciably superior. In annual global terms, the results hid poor estimations throughout the year, where overestimations were compensated by underestimated results. This fact was reflected in the monthly results: the software yielded overestimates during the colder months, while the models showed better estimates during the warmer months. In most studies, the deviation was below 10% when the annual results were analyzed. The accuracy of the software was also reduced when the complexity of the dual-axis solar tracking systems replaced the fixed installation.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1074
Author(s):  
Raul Rotar ◽  
Sorin Liviu Jurj ◽  
Flavius Opritoiu ◽  
Mircea Vladutiu

This paper presents a mathematical approach for determining the reliability of solar tracking systems based on three fault coverage-aware metrics which use system error data from hardware, software as well as in-circuit testing (ICT) techniques, to calculate a solar test factor (STF). Using Euler’s named constant, the solar reliability factor (SRF) is computed to define the robustness and availability of modern, high-performance solar tracking systems. The experimental cases which were run in the Mathcad software suite and the Python programming environment show that the fault coverage-aware metrics greatly change the test and reliability factor curve of solar tracking systems, achieving significantly reduced calculation steps and computation time.


2019 ◽  
Vol 2 (S1) ◽  
Author(s):  
Jelenko Karpić ◽  
Ekanki Sharma ◽  
Tamer Khatib ◽  
Wilfried Elmenreich

Abstract The rising demand for sustainable energy requires to identify the sites for photovoltaic systems with the best performance. This paper tackles the question of feasibility of photovoltaic power plants at high altitude. A direct comparison between an alpine and an urban area site is conducted in the south of Austria. Two low-cost automatic photovoltaic power measurement devices with dual-axis sun tracking and maximum power point tracking are deployed at two test sites. The system periodically performs a scan over the southern semihemisphere and executes maximum power point adjustment in order to assess the performance for a given direction. The gathered data shows a higher photovoltaic power yield in the higher altitude test site. Furthermore, the high altitude photovoltaic power as a function of azimuth and elevation angle appears to be not only higher but also more flat than in lower altitudes. This indicates a lower power loss in case of deviation from the optimal solar angles. The results show that even on low-cost hardware a difference in photovoltaic power can be observed, even though in this experiment it amounts to less than 5% increase of peak power in higher altitudes. However, the measured peak powers on the mountain are more stable and therefore closer to a constant level than the heavily fluctuating peak power values at the low altitude site. Additionally, a slight shift in optimal elevation angles between altitudes can be observed, as the optimum angle turns out to be lower on the high altitude site. This angle shift could be caused by snow reflections on the mountainous test site.


Sign in / Sign up

Export Citation Format

Share Document