scholarly journals The earth dynamic system: the earth rotation vs mantle convection

2010 ◽  
Vol 02 (12) ◽  
pp. 1333-1340
Author(s):  
Shuping Chen
2020 ◽  
Vol 42 (3) ◽  
pp. 271-282
Author(s):  
OLEG IVANOV

The general characteristics of planetary systems are described. Well-known heat sources of evolution are considered. A new type of heat source, variations of kinematic parameters in a dynamical system, is proposed. The inconsistency of the perovskite-post-perovskite heat model is proved. Calculations of inertia moments relative to the D boundary on the Earth are given. The 9 times difference allows us to claim that the sliding of the upper layers at the Earth's rotation speed variations emit heat by viscous friction.This heat is the basis of mantle convection and lithospheric plate tectonics.


Author(s):  
Roy Livermore

Despite the dumbing-down of education in recent years, it would be unusual to find a ten-year-old who could not name the major continents on a map of the world. Yet how many adults have the faintest idea of the structures that exist within the Earth? Understandably, knowledge is limited by the fact that the Earth’s interior is less accessible than the surface of Pluto, mapped in 2016 by the NASA New Horizons spacecraft. Indeed, Pluto, 7.5 billion kilometres from Earth, was discovered six years earlier than the similar-sized inner core of our planet. Fortunately, modern seismic techniques enable us to image the mantle right down to the core, while laboratory experiments simulating the pressures and temperatures at great depth, combined with computer modelling of mantle convection, help identify its mineral and chemical composition. The results are providing the most rapid advances in our understanding of how this planet works since the great revolution of the 1960s.


1988 ◽  
Vol 128 ◽  
pp. 399-404 ◽  
Author(s):  
Richard S. Gross

The effect on the Earth Rotation Parameters (ERP) of all the large earthquakes that occurred during 1977–1985 is evaluated. It is found that they cannot have caused the variations observed in the ERP during this time period.


1985 ◽  
Vol 38 (02) ◽  
pp. 216-217
Author(s):  
G. A. Wilkins

New techniques of measurement make it possible in 1984 to determine positions on the surface of the Earth to a much higher precision than was possible in 1884. If we look beyond the requirements of navigation we can see useful applications of global geodetic positioning to centimetric accuracy for such purposes as the control of mapping and the study of crustal movements. These new techniques depend upon observations of external objects, such as satellites or quasars rather than stars, and they require that the positions of these objects and the orientation of the surface of the Earth are both known with respect to an appropriate external reference system that is ‘fixed’ in space. We need networks of observing stations and analysis centres that monitor the motions of the external objects and the rotation of the Earth. Observations of stars by a transit circle are no longer adequate for this purpose.


Eos ◽  
2002 ◽  
Vol 83 (27) ◽  
pp. 295
Author(s):  
Michael Manga
Keyword(s):  

2021 ◽  
Author(s):  
Lucie Tajcmanova ◽  
Yury Podladchikov ◽  
Evangelos Moulas

<p>Quantifying natural processes that shape our planet is a key to understanding the geological observations. Many phenomena in the Earth are not in thermodynamic equilibrium. Cooling of the Earth, mantle convection, mountain building are examples of dynamic processes that evolve in time and space and are driven by gradients. During those irreversible processes, entropy is produced. In petrology, several thermodynamic approaches have been suggested to quantify systems under chemical and mechanical gradients. Yet, their thermodynamic admissibility has not been investigated in detail. Here, we focus on a fundamental, though not yet unequivocally answered, question: which thermodynamic formulation for petrological systems under gradients is appropriate – mass or molar?  We provide a comparison of both thermodynamic formulations for chemical diffusion flux, applying the positive entropy production principle as a necessary admissibility condition. Furthermore, we show that the inappropriate solution has dramatic consequences for understanding the key processes in petrology, such as chemical diffusion in the presence of stress gradients.</p>


2021 ◽  
Vol 136 (5) ◽  
Author(s):  
Andrea Basti ◽  
Nicolò Beverini ◽  
Filippo Bosi ◽  
Giorgio Carelli ◽  
Donatella Ciampini ◽  
...  

AbstractGINGERINO is one of the most sensitive Sagnac laser-gyroscopes based on an heterolithic mechanical structure. It is a prototype for GINGER, the laser gyroscopes array proposed to reconstruct the Earth rotation vector and in this way to measure General Relativity effects. Many factors affect the final sensitivity of laser gyroscopes, in particular, when they are used in long-term measurements, slow varying environmental parameters come into play. To understand the role of different terms allows to design more effective mechanical as well as optical layouts, while a proper model of the dynamics affecting long-term (low frequency) signals would increase the effectiveness of the data analysis for improving the overall sensitivity. In this contribution, we focus our concerns on the effects of room temperature and pressure aiming at further improving mechanical design and long-term stability of the apparatus. Our data are compatible with a local orientation changes of the Gran Sasso site below $$\mu $$ μ rad as predicted by geodetic models. This value is consistent with the requirements for GINGER and the installation of an high-sensitivity Sagnac gyroscope oriented at the maximum signal, i.e. along the Earth rotation axes.


Sign in / Sign up

Export Citation Format

Share Document