scholarly journals Recent Advances in Japanese Fisheries Science in the Kuroshio-Oyashio Region through Development of the FRA-ROMS Ocean Forecast System: Overview of the Reproducibility of Reanalysis Products

2017 ◽  
Vol 07 (01) ◽  
pp. 62-90 ◽  
Author(s):  
Hiroshi Kuroda ◽  
Takashi Setou ◽  
Shigeho Kakehi ◽  
Shin-ichi Ito ◽  
Takeshi Taneda ◽  
...  
2020 ◽  
Author(s):  
Raffaele Montuoro ◽  
Georg Grell ◽  
Li Zhang ◽  
Stuart McKeen ◽  
Gregory Frost ◽  
...  

<p>Significant progress has been made within the last couple of years towards developing online coupled systems aimed at providing more accurate descriptions of atmospheric chemistry processes to improve performance of global aerosol and air quality forecasts. Operating within the U.S. National Weather Service (NWS) research-to-operation initiative to implement the fully-coupled Next Generation Global Prediction System (NGGPS), cooperative development efforts have delivered two integrated online global prediction systems for aerosols (GEFS-Aerosols) and air quality (FV3GFS-AQM). These systems include recent advances in aerosol convective transport and wet deposition processes introduced into the SAS scheme of the National Center for Environmental Prediction’s (NCEP) latest Global Forecast System (GFS) based on the Finite-Volume cubed-sphere dynamical core (FV3). GEFS-Aerosols is slated to become the new control member of the NWS Global Ensemble Forecast System (GEFS). The model features an online-coupled version of the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model with a biomass-burning, plume-rise model and recent advances from NOAA Earth System Research Laboratory (ESRL), along with a state-of-the-art FENGSHA dust scheme from NOAA Air Resource Laboratory (ARL). FV3GFS-AQM incorporates a coupled, single-column adaptation of the U.S. Environmental Protection Agency’s (EPA) Community Multiscale Air Quality (CMAQ) model to improve NOAA’s current National Air Quality Forecast Capability (NAQFC). Both coupled systems’ design and development benefited from the use of the National Unified Operational Prediction Capability (NUOPC) Layer, which provided a common model architecture for interoperable, coupled model components within the framework of NOAA’s Environmental Modeling System (NEMS). Results from each of the described coupled systems will be discussed.</p>


2021 ◽  
Vol 7 ◽  
Author(s):  
Toru Miyama ◽  
Shoshiro Minobe ◽  
Hanako Goto

The sea surface temperature (SST) of the Oyashio region in boreal summer abruptly increased in 2010 and high summertime SST repeated every year until 2016. Observations and an ocean reanalysis show that this marine heatwave occurred not only at the surface but also at deeper depths down to 200 m. Furthermore, salinity in summer also increased in parallel with the temperature. The rises in temperature and salinity indicate the strengthening of the Kuroshio water influence. The sea surface height and velocity show that the southward intrusion of the Oyashio near the coast in summer weakened from 2010 accompanied by an increase in anticyclonic eddies from the Kuroshio Extension. The much more frequent existence of anticyclonic eddies to the east of the first intrusion of the Oyashio in summer is closely associated with the weakening of the first intrusion and the strengthening of the second intrusion. It is suggested that the rise in the water temperature could increase a catch of yellowtail (Seriola quinqueradiata) in northern Japan.


1988 ◽  
Vol 132 ◽  
pp. 525-530
Author(s):  
Raffaele G. Gratton

The use CCD detectors has allowed a major progress in abundance derivations for globular cluster stars in the last years. Abundances deduced from high dispersion spectra now correlates well with other abundance indicators. I discuss some problems concerning the derivation of accurate metal abundances for globular clusters using high dispersion spectra from both the old photographic and the most recent CCD data. The discrepant low abundances found by Cohen (1980), from photographic material for M71 giants, are found to be due to the use of too high microturbulences.


2020 ◽  
Vol 7 (8) ◽  
pp. 1022-1060 ◽  
Author(s):  
Wenbo Ma ◽  
Nikolaos Kaplaneris ◽  
Xinyue Fang ◽  
Linghui Gu ◽  
Ruhuai Mei ◽  
...  

This review summarizes recent advances in C–S and C–Se formations via transition metal-catalyzed C–H functionalization utilizing directing groups to control the site-selectivity.


2006 ◽  
Vol 73 ◽  
pp. 109-119 ◽  
Author(s):  
Chris Stockdale ◽  
Michael Bruno ◽  
Helder Ferreira ◽  
Elisa Garcia-Wilson ◽  
Nicola Wiechens ◽  
...  

In the 30 years since the discovery of the nucleosome, our picture of it has come into sharp focus. The recent high-resolution structures have provided a wealth of insight into the function of the nucleosome, but they are inherently static. Our current knowledge of how nucleosomes can be reconfigured dynamically is at a much earlier stage. Here, recent advances in the understanding of chromatin structure and dynamics are highlighted. The ways in which different modes of nucleosome reconfiguration are likely to influence each other are discussed, and some of the factors likely to regulate the dynamic properties of nucleosomes are considered.


1950 ◽  
Vol 34 (5) ◽  
pp. 1363-1380
Author(s):  
Theodore L. Badger ◽  
William E. Patton

1990 ◽  
Vol 23 (2) ◽  
pp. 251-270
Author(s):  
Martin P. Sandler, MD ◽  
James A. Patton ◽  
Robert H. Ossoff

Sign in / Sign up

Export Citation Format

Share Document