scholarly journals Effect of uric acid on mitochondrial function and oxidative stress in hepatocytes

2016 ◽  
Vol 15 (2) ◽  
Author(s):  
Y. Yang ◽  
Y. Zhou ◽  
S. Cheng ◽  
J.L. Sun ◽  
H. Yao ◽  
...  
2019 ◽  
Vol 22 (7) ◽  
pp. 496-501
Author(s):  
Fatemeh Ahmadi-Motamayel ◽  
Parisa Falsafi ◽  
Hamidreza Abolsamadi ◽  
Mohammad T. Goodarzi ◽  
Jalal Poorolajal

Background: Cigarette smoke free radicals can cause cellular damage and different diseases. All the body fluids have antioxidants which protect against free radicals. Objective: The aim of this study was to evaluate salivary total antioxidant capacity and peroxidase, uric acid and malondialdehyde levels in smokers and a nonsmoking control group. Methods: Unstimulated saliva was collected from 510 males. A total of 259 subjects were current smokers and 251 were non-smokers. The levels of salivary total antioxidant capacity, uric acid, peroxidase and malondialdehyde were measured using standard procedures. Data were analyzed with t test and ANOVA. Results: The smokers were younger and dental hygiene index was higher than healthy nonsmoking controls. The mean total antioxidant capacity in smokers and nonsmokers was 0.13±0.07 and 0.21±011, respectively (P=0.001). Smokers had significantly lower peroxidase and uric acid levels than healthy controls. In addition, the mean malondialdehyde levels in the smokers and nonsmokers were 4.55 ±2.61 and 2.79 ±2.21, respectively (P=0.001). Conclusion: Cigarette smoke produces free radical and oxidative stress, causing many side effects. Salivary antioxidant levels decreased and malondialdehyde levels increased in smokers, indicating the high oxidative stress among smokers compared to nonsmokers. Cigarette smoke had deleterious effects on main salivary antioxidants levels.


2021 ◽  
pp. 153537022110471
Author(s):  
Junxia Zhang ◽  
Xue Lin ◽  
Jinxiu Xu ◽  
Feng Tang ◽  
Lupin Tan

Hyperuricemia, which contributes to vascular endothelial damage, plays a key role in multiple cardiovascular diseases. This study was designed to investigate whether C1q/tumor necrosis factor (TNF)-related protein 3 (CTRP3) has a protective effect on endothelial damage induced by uric acid and its underlying mechanisms. Animal models of hyperuricemia were established in Sprague-Dawley (SD) rats through the consumption of 10% fructose water for 12 weeks. Then, the rats were given a single injection of Ad-CTRP3 or Ad-GFP. The animal experiments were ended two weeks later. In vitro, human umbilical vein endothelial cells (HUVECs) were first infected with Ad-CTRP3 or Ad-GFP. Then, the cells were stimulated with 10 mg/dL uric acid for 48 h after pretreatment with or without a Toll-like receptor 4 (TLR4)-specific inhibitor. Hyperuricemic rats showed disorganized intimal structures, increased endothelial apoptosis rates, increased inflammatory responses and oxidative stress, which were accompanied by reduced CTRP3 and elevated TLR4 protein levels in the thoracic aorta. In contrast, CTRP3 overexpression decreased TLR4 protein levels and ameliorated inflammatory responses and oxidative stress, thereby improving the morphology and apoptosis of the aortic endothelium in rats with hyperuricemia. Similarly, CTRP3 overexpression decreased TLR4-mediated inflammation, reduced oxidative stress, and rescued endothelial damage induced by uric acid in HUVECs. In conclusion, CTRP3 ameliorates uric acid-induced inflammation and oxidative stress, which in turn protects against endothelial injury, possibly by inhibiting TLR4-mediated inflammation and downregulating oxidative stress.


2018 ◽  
Vol 39 (5) ◽  
pp. 295-299 ◽  
Author(s):  
Eun Jeong Ok ◽  
Kiyoung Kim ◽  
Sat Byul Park

Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1827
Author(s):  
Nofar Schottlender ◽  
Irit Gottfried ◽  
Uri Ashery

Hyperbaric oxygen treatment (HBOT)—the administration of 100% oxygen at atmospheric pressure (ATA) greater than 1 ATA—increases the proportion of dissolved oxygen in the blood five- to twenty-fold. This increase in accessible oxygen places the mitochondrion—the organelle that consumes most of the oxygen that we breathe—at the epicenter of HBOT’s effects. As the mitochondrion is also a major site for the production of reactive oxygen species (ROS), it is possible that HBOT will increase also oxidative stress. Depending on the conditions of the HBO treatment (duration, pressure, umber of treatments), short-term treatments have been shown to have deleterious effects on both mitochondrial activity and production of ROS. Long-term treatment, on the other hand, improves mitochondrial activity and leads to a decrease in ROS levels, partially due to the effects of HBOT, which increases antioxidant defense mechanisms. Many diseases and conditions are characterized by mitochondrial dysfunction and imbalance between ROS and antioxidant scavengers, suggesting potential therapeutic intervention for HBOT. In the present review, we will present current views on the effects of HBOT on mitochondrial function and oxidative stress, the interplay between them and the implications for several diseases.


Hypertension ◽  
2013 ◽  
Vol 62 (suppl_1) ◽  
Author(s):  
Ravi Nistala ◽  
Javad Habibi ◽  
Annayya Aroor ◽  
Melvin R Hayden ◽  
Mona Garro ◽  
...  

Objectives: Obesity is an independent risk factor for development and progression of renal injury. High fructose corn syrup consumption has coincided with the obesity epidemic in the United States. High fructose (60%) diets have been demonstrated to be associated with elevation in BP and worsening insulin resistance along with renal injury via increased hepatic production of uric acid. Recently, DPPIV inhibitors have been shown to improve diabetic changes and sodium excretion, effects that are beyond glycemic control. Therefore, the renal protective benefits of DPPIV inhibition in a clinically relevant Western diet fed mouse model were examined. Methods: Mice fed a high fat/high fructose (WD) diet for 16 weeks and given a DPPIV inhibitor MK0626 in their diet were examined for metabolic parameters, inflammation, kidney renin-angiotensin system (RAS) and oxidative stress. Renal injury was assessed by biochemical, immunohistological and electron microscopy techniques. In vitro , angiotensin II (Ang II) effects on OKP-PTCs were assessed for mechanism. Results: MK0626 ameliorated WD-induced increases in serum uric acid, oxidative stress and RAS. WD induced suppression of IL-10 was reversed by MK0626. There was a tendency to improve HOMA-IR by MK0626 but no effect on BP and body weights. Diet induced DPPIV activation in the plasma and kidney of WD mice was abrogated by MK0626 (~80%). WD mice were characterized by increased proteinuria (~3-fold), mesangial expansion and podocyte effacement and these changes were prevented by MK0626. In addition, the PTC endocytosis protein megalin and basilar canalicular network and mitochondrial ultrastructure abnormalities were reversed by MK0626. WD mice had decreased sodium excretion which was improved by MK0626. Ang II directly increased DPPIV activity and sodium hydrogen exchanger activity in PTCs and decreased megalin protein, which was effectively prevented by MK0626. Conclusion: Thus, WD induced increases in DPPIV activity is associated with elevations in uric acid, renal RAS, inflammation and oxidative stress which may result in renal injury. These results suggest that DPPIV inhibitors prevent WD induced renal injury and offer a novel therapy for diabetic and obesity associated renal disease.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Ahmed Gharbi ◽  
Ali Hamila ◽  
Adel Bouguezzi ◽  
Azza Dandana ◽  
Salima Ferchichi ◽  
...  

Abstract Background Oxidative stress is involved in many diseases including diabetes and cancer. Numbers of studies have suggested its involvement in the pathogenesis of periodontal diseases. The aim of this study was to evaluate the levels of biochemical parameters and oxidative stress markers in plasma of healthy and chronic periodontitis patients. Methods One hundred thirty subjects were divided into two groups; patients (mean age = 42 ± 13.6 y.o) and control (mean age = 44.8 ± 12.6 y.o). Patients and healthy subjects were free from any infection, coronary or heart disease, diabetes or liver failure. Total cholesterol, LDLc, HDLc, Triglycerides (TG), creatinine, uric acid (UA), glucose and urea levels as well as the activities of enzymatic antioxidants such as catalase, glutathione reductase (GR) and total antioxidant capacity (TAOC), were measured in plasma samples using colorimetric assays. Statistical differences between groups were determined by Student’s t-test and p ≤ 0.05 was considered as significant. Results Periodontitis patients exhibited significant decrease in the activities of catalase, TAOC, GR and TG, cholesterol, LDLc, glucose, HDLc, uric acid levels in plasma samples in comparison with healthy subjects. However, no statistically significant differences in the levels of creatinine and urea were observed between the two groups. Conclusion The reduction of plasma antioxidant activities (Catalase, TAOC, GR) may have a role in the pathogenesis of periodontal diseases. Our findings suggest a decrease in the host capacity to control the damage caused by oxidative stress. Therefore, therapeutic strategies, aiming at modulating the oxidative stress could be considered as potential tools for the prevention or treatment of periodontal diseases and their potential systemic effects on the general health.


Sign in / Sign up

Export Citation Format

Share Document