Effects of Injection Pressure on Combustion of a Heavy Duty Diesel Engine With Common Rail DME Injection Equipment

Author(s):  
Byeong-il An ◽  
Yoshio Sato ◽  
Seang-Wock Lee ◽  
Toshimitsu Takayanagi
1994 ◽  
Author(s):  
Yoshihisa Yamaki ◽  
Kazutoshi Mori ◽  
Hiroshi Kamikubo ◽  
Susumu Kohketsu ◽  
Kohji Mori ◽  
...  

2009 ◽  
Vol 86 (10) ◽  
pp. 2257-2261 ◽  
Author(s):  
Hewu Wang ◽  
Han Hao ◽  
Xihao Li ◽  
Ke Zhang ◽  
Minggao Ouyang

2012 ◽  
Vol 516-517 ◽  
pp. 623-627
Author(s):  
Ye Yuan ◽  
Guo Xiu Li ◽  
Yu Song Yu ◽  
Peng Zhao ◽  
Hong Meng Li

Multi-dimensional simulation was applied for the investigation of the combustion system of a heavy-duty diesel engine. Firstly, the matching of combustion chamber and injection pressure has been determined by simulation. Then through intermediate characteristic parameters which could quantitatively describe the properties of the mixing and combustion, the influence of the matching of chamber caliber ratios and injection pressure on each sub-process in compression and power stroke was analyzed comprehensively. The results showed that, for the model studied in this article, increasing the combustion chamber caliber ratio and injection pressure could help expanding the distribution range of the mixture in cylinder, making the mixture more uniform, increasing the proportion of the dilute mixture, thus effectively improved the power performance.


Author(s):  
Yuanjiang Pei ◽  
Roberto Torelli ◽  
Tom Tzanetakis ◽  
Yu Zhang ◽  
Michael Traver ◽  
...  

Recent experimental studies on a production heavy-duty diesel engine have shown that gasoline compression ignition (GCI) can operate in both conventional mixing-controlled and low-temperature combustion modes with similar efficiency and lower soot emissions compared to diesel at a given engine-out NOx level. This is primarily due to the high volatility and low aromatic content of high reactivity, light-end fuels. In order to fully realize the potential of GCI in heavy-duty applications, accurate characterization of gasoline sprays for high-pressure fuel injection systems is needed to develop quantitative, three-dimensional computational fluid models that support simulation-led design efforts. In this work, the non-reacting fuel spray of a high reactivity gasoline (research octane number of ∼60, cetane number of ∼34) was modeled under typical heavy-duty diesel engine operating conditions, i.e., high temperature and pressure, in a constant-volume combustion chamber. The modeling results were compared to those of a diesel spray at the same conditions in order to understand their different behaviors due to fuel effects. The model was developed using a Lagrangian-Particle, Eulerian-Fluid approach. Predictions were validated against available experimental data generated at Michigan Technological University for a single-hole injector, and showed very good agreement across a wide range of operating conditions, including ambient pressure (3–10 MPa), temperature (800–1200 K), fuel injection pressure (100–250 MPa), and fuel temperature (327–408 K). Compared to a typical diesel spray, the gasoline spray evaporates much faster, exhibiting a much shorter liquid length and wider dispersion angle which promote gas entrainment and enhance air utilization. For gasoline, the liquid length is not sensitive to different ambient temperatures above 800 K, suggesting that the spray may have reached a “saturated” state where the transfer of energy from the hot gas to liquid has already been maximized. It was found that higher injection pressure is more effective at promoting the evaporation process for diesel than it is for gasoline. In addition, higher ambient pressure leads to a more compact spray and fuel temperature variation only has a minimal effect for both fuels.


Sign in / Sign up

Export Citation Format

Share Document