Dynamic Properties of Styrene-Butadiene Rubber for Automotive Applications

Author(s):  
Hejie Lin ◽  
Turgay Bengisu ◽  
Zissimos P. Mourelatos
2016 ◽  
Vol 89 (2) ◽  
pp. 262-271 ◽  
Author(s):  
Qingguo Wang ◽  
Jingrui Liu ◽  
Quande Cui ◽  
Xiao Xiao

ABSTRACT How to improve the wet skid resistance of rubber composites for tire tread while decreasing the rolling resistance is very important for both rubber researchers and industry. The irradiation-vulcanized elastomer particles, ultrafine fully-vulcanized powder nitrile butadiene rubber (UFPNBR), having the diameter of about 80 nm, were studied on modifying the dynamic mechanical properties of styrene butadiene rubber/natural rubber (SBR/NR) composites for tire tread. It is notable that the UFPNBR particles can improve the tanδ values of SBR/NR composites in a temperature range from −10 to 20 °C and decrease the tanδ values in the temperature range from 50 to 70 °C simultaneously, which indicates that the UFPNBR particles not only can improve the wet skid resistance but also can reduce the rolling resistance of the SBR/NR composites. On the other hand, the UFPNBR-modified SBR/NR composites also have good dynamic properties for safety operation of tires at high temperature and good tensile strength, tear strength, and fatigue properties in the range of 8 phr UFPNBR loadings.


2019 ◽  
pp. 000-000
Author(s):  
Qing-Yuan Han ◽  
Xu Li ◽  
Yu-Chun Li ◽  
You-Ping Wu

ABSTRACT The compatibility between solution polymerized styrene–butadiene rubber (SSBR 2466) and natural rubber (NR) is characterized by differential scanning calorimetry and dynamic mechanical thermal analysis. The single glass transition in the entire temperature range of all NR/SSBR blends and good correlation between Tg and SSBR fraction prove the excellent compatibility between SSBR 2466 and NR. With increasing SSBR content, a reduced Payne effect, more homogeneous dispersion of silica, stronger rubber–filler interaction, and more silica selectively distributed in the SSBR phase were determined via rubber-processing analysis, transmission electron microscopy, bound rubber, and thermogravimetric analysis, respectively. The high vinyl content, low styrene content, and end-functionalized structure of SSBR play vital roles in promoting its compatibility with NR and a stronger rubber–silica linkage. The resulting increased tan δ at 0 °C and low tan δ at 60 °C indicates good wet-skid resistance and low rolling resistance by blending SSBR 2466, and 70/30 NR/SSBR is the best balance for producing a “green tire” tread.


2016 ◽  
Vol 717 ◽  
pp. 52-56 ◽  
Author(s):  
Wei Liu ◽  
Lin Li ◽  
Bing Kai Han ◽  
Cheng Zhong Zong

Carbon black ( CB ) and silica were used as two-component fillers to enhance the practicability of rubber. In this study, the microstructure, mechanical and dynamic properties of solution-polymerized styrene-butadiene rubber ( SSBR ) vulcanizates filled with carbon black and silica were characterized. 50 phr of total hybrid fillers was used as the base. A series of experiments with different ratios of CB/silica were carried out to determine the best contribution to the performance of SSBR vulcanizates. The studies have shown that when the vulcanizates exhibited the better overall mechanical and dynamic performance with 20 phr silica loading and 30 phr CB loading.


RSC Advances ◽  
2016 ◽  
Vol 6 (18) ◽  
pp. 14643-14650 ◽  
Author(s):  
Yanlong Luo ◽  
Liangliang Qu ◽  
Huifang Su ◽  
Tung W. Chan ◽  
Sizhu Wu

The dynamic properties, filler–rubber interactions, and filler dispersion in silica/SSBR composites with various chemical structures of SSBR were studied using MD. Competing effects led to the existence of an optimum modifier content of 14.2 wt%.


2012 ◽  
Vol 184 ◽  
pp. 405-410 ◽  
Author(s):  
M. A. Mansilla ◽  
A.A. Ghilarducchi ◽  
H.R. Salva ◽  
A. J. Marzocca

The preparation method of an elastomeric blend can influence the mechanical properties of the vulcanized compound. In this research elastomeric blends composed by natural rubber and styrene butadiene rubber were mixed using two different methods: by mixing in a roll mill and by dissolution of both elastomers in toluene, mixing of both solutions with the curatives and the evaporation of the solvent. Samples with different Natural Rubber/Styrene Butadiene Rubber relation were prepared by both methods and vulcanized at 433K with a system based on sulphur and accelerator (N-t-butyl-2-benzothiazole sulfenamide) up to the time of optimum cure. The blend composition and the preparation methods have a strong influence in the mechanical dynamic properties. Scanning Electron Microscopy observations indicate that, in the blends prepared by the dissolution method, the samples show better miscibility of the constitutive phases than those prepared by the roll milling method. The temperature dependence of the internal friction was studied for each sample using a subresonant forced pendulum at 1 Hz between 190K and 250K. Depending on the blend composition, one or two glass transition temperatures (Tg) associated to the α-relaxation were measured. In the last case each Tgcorresponds to each elastomeric phase of the compound. The loss tangent data for each compound was analyzed using a mixture law of two phases in the frame of the Rouse theory. The adjustment of the data to the proposed model was very good for both preparation method and the whole composition range of the compounds. Then it was possible to obtain the Tg, the main relaxation time and the activation energy values of each compound and, in some samples, the respective values for each elastomeric phase.


2019 ◽  
Vol 47 (4) ◽  
pp. 280-291
Author(s):  
Olena Shafranska ◽  
Dean C. Webster ◽  
Bret J. Chisholm ◽  
Sean McFarlane ◽  
Janice Tardiff

ABSTRACT Soybean oil (SBO) was modified with polystyrene via a radical graft polymerization reaction for use as a processing oil in tire tread compounds. Poly(styrene-butadiene)/polybutadiene rubber compounds with silica and carbon black, containing different processing oils including naphthenic oil (NO), aromatic oil (AO), SBO, and polystyrene-modified SBO (SBO-PS), were formulated, vulcanized, and tested. The curing behavior, mechanical properties, and dynamic properties were investigated. The cure test results showed that all SBO-based rubbers had a shorter scorch time and cure window than the NO- and AO-based rubbers. The tensile tests demonstrated that partial and complete replacement of NO with SBO led to reduced tensile modulus but increased elongation of rubber. For the rubbers compounded with SBO-PS and with a 50/50 mixture of NO/SBO-PS, tensile strength and elongation were higher than for the NO-based rubber. The same tendency was observed when SBO-PS–based rubbers were compared with SBO- and AO-based rubbers. SBO-PS–based rubbers demonstrated better tensile properties than AO-based rubbers and far better properties than SBO-based rubbers. In the tear resistance test and durometer hardness test, SBO-PS contained rubbers that showed similar properties to NO-containing rubber. The dynamic mechanical analysis of SBO-PS–containing rubbers demonstrated that use of this compound in tire treads is expected to improve both rolling resistance and wet traction when compared with an AO-based rubber. The modification of SBO with grafted PS is a promising method of making processing oil, which can replace petroleum-based processing oils with bio-based renewable oils in tire tread compounds while improving their properties.


Sign in / Sign up

Export Citation Format

Share Document