Fuel Consumption Improvement of 2.4L ULPC Diesel Engine by Optimizing the Combustion System; Nozzle, Swirl Ratio and Piston Bowl Geometry

Author(s):  
Dockoon Yoo ◽  
Jihun Song ◽  
Yeongchu Kim ◽  
Wook Jung ◽  
Duksang Kim
Author(s):  
Jonathan Dolak ◽  
Deep Bandyopadhyay

The objective of this research was to optimize an Electro-Motive Diesel (EMD) large-bore, two-cycle diesel engine (710 cubic inches of displacement per cylinder) at high load to minimize soot, nitrogen oxide (NOx) and fuel consumption. The variables considered were the number of spray-hole nozzles per injector, including spray angle and piston bowl geometry, for a range of injection pressures. Analytical simulations were conducted for a calibrated EMD 710 Tier 2 engine and a few of the top-performing cases were studied in detail. CONVERGE™, a commercially available, advanced combustion simulation software was used in this analysis. A surface deforming tool, Sculptor®, was used to obtain various piston bowl geometries. MiniTab® was utilized for statistical analysis. Results show that optimal combinations of injection variables and piston bowl shape exist to simultaneously reduce emissions and fuel consumption compared to Tier 2 EMD 710 engines. These configurations will be further tested in a single-cylinder test cell and presented later. This investigation shows the importance of bowl geometry and spray targeting on emissions and fuel consumption for large-bore, two-stroke engines with high power density.


Author(s):  
Yu Zhang ◽  
Yuanjiang Pei ◽  
Meng Tang ◽  
Michael Traver

Abstract This study computationally investigates the potential of utilizing gasoline compression ignition (GCI) in a heavy-duty diesel engine to address a future ultra-low tailpipe NOx standard of 0.027 g/kWh while achieving high fuel efficiency. By conducting closed-cycle, full-geometry, 3-D computational fluid dynamics (CFD) combustion simulations, the effects of piston bowl geometry, injector spray pattern, and swirl ratio (SR) were investigated for a market gasoline. The simulations were performed at 1375 rpm over a load range from 5 to 15 bar BMEP. The engine compression ratio (CR) was increased from 15.7 used in previous work to 16.5 for this study. Two piston bowl concepts were studied with Design 1 attained by simply scaling from the baseline 15.7 CR piston bowl, and Design 2 exploring a wider and shallower combustion chamber design. The simulation results predicted that through a combination of the wider and shallower piston bowl design, a 14-hole injector spray pattern, and a swirl ratio of 1, Design 2 would lead to a 2–7% indicated specific fuel consumption (ISFC) improvement over the baseline by reducing the spray-wall interactions and lowering the in-cylinder heat transfer loss. Design 1 (10-hole and SR2) showed a more moderate ISFC reduction of 1–4% by increasing CR and the number of nozzle holes. The predicted fuel efficiency benefit of Design 2 was found to be more pronounced at low to medium loads.


2013 ◽  
Vol 391 ◽  
pp. 93-97 ◽  
Author(s):  
Leily Nurul Komariah ◽  
Susila Arita ◽  
Sumardi Novia ◽  
Soni Solistia Wirawan ◽  
Muhammad Yazid

Biodiesel application in boiler is basicly potential due to the combustion system tends to be simpler than compression ignition as performed in diesel engine. The various tests on combustion facilities showed that the use of biodiesel will increase the fuel consumption. This study was conducted in a fire tube boiler, with heat input rate of 60.000 kCal/hr and 3 bars of pressure, using palm biodiesel. A series of test shown that the combustion behavior in boiler was strongly possible influenced by some changes in physical properties of the fuel. The blends was varied in 10, 20, 30, 50 and 100% of biodiesel in mixture with petrodiesel. The fuel consumption was likely similar or slightly lower than petrodiesel when the fuel used in lower blends (less than 20%). In higher blends, the fuel consumption was increased up to 17%. The rate of consumption was relatively lower at average 9,4% in half load mode of the boiler operation rather than full load.


2014 ◽  
Author(s):  
Helgi Skuli Fridriksson ◽  
Martin Tuner ◽  
Oivind Andersson ◽  
Bengt Sunden ◽  
Hakan Persson ◽  
...  

Author(s):  
S. K. Aggarwal ◽  
D. E. Longman

There has been significant progress in reducing NOx and particulate emissions from diesel engines. However, many challenges remain particularly in view of the global energy issues and increasingly stringent emission regulations. Several recent efforts have focused on achieving low-temperature, premixed combustion for simultaneously reducing NOx and PM emissions, but without any detrimental effect on fuel consumption and energy density. Various strategies being explored include homogeneously charged compression ignition (HCCI), reducing flame temperature through excessive EGR, enhancing premixed combustion by controlling injection parameters, and promoting premixing by using early injection and low cetane number fuels. The present study is aimed at examining the effects of injection timing, initial gas temperature, and cylinder and piston wall temperatures on the spray processes, and thereby on the ignition, combustion and emission characteristics in a diesel engine. The reacting two-phase flow field in a 1.9L, 4-cylinder GM diesel engine is simulated using a CFD code ‘CONVERGE’, which employs an innovative cut-cell Cartesian method for grid generation, and a semi-detailed reaction mechanism for n-heptane combustion. A 51.430 sector with a single hole is considered to simulate the 7-hole common-rail injector. Results indicate that while the initial gas temperature does not affect the spray and combustion behavior qualitatively, it modifies combustion temperatures and thus NOx emissions noticeably. On the other hand, the piston and cylinder wall temperatures qualitatively influence the spray behavior and thereby the combustion and emission behavior. The injection timing has a strong influence on the spray and mixture formation processes, and thus on the combustion and emission characteristics. Delaying the start of injection (SOI) can lead to a significant reduction in NOx formation with only a moderate increase in soot formation. A detailed analysis of the spray and combustion processes indicated two main fuel consumption regions, one near the piston bowl wall and the other in the main spray near the injector. Fuel consumption in the first region mainly follows the conventional diesel combustion model involving rich premixed burning and diffusion burning, while that in the second region involves premixed combustion. As the SOI is delayed, the spray impingement on the piston bowl wall increases, causing more fuel consumption in the first region, which leads to reduction in NOx but increase in soot formation, indicating a tradeoff between NOx and soot emissions. However, with further delay in the SOI, the amount of fuel consumption in the first region increases significantly, while that in the main spray region involves lean premixed combustion. The net effect is a significant reduction in NOx with only a moderate increase in soot emission. Future studies will focus on the effects of modifying the level of premixing and the ignition delay on diesel engine combustion and emission.


Author(s):  
Gian Marco Bianchi ◽  
Giulio Cazzoli ◽  
Claudio Forte ◽  
Marco Costa ◽  
Marcello Oliva

Nowadays, environmental concerns are posing a great challenge to DI Diesel engines. Increasingly tightening emission limits require a higher attention on combustion efficiency. In this scenario, computational fluid-dynamics can prove its power guaranteeing a deeper understanding of mixture formation process and combustion. A high efficiency Diesel engine can be developed only mastering all the parameters that can affect the combustion and, therefore, NOx and soot emissions. In this work, the development of an engine in order to fulfill Tier 4i emission standard will be presented. Originally, the engine was a two-valve engine supplied with a DPF. Since no SCR aftertreatment is supplied, NOx emission target are achieved through external exhaust gas recirculation and retarding the start of injection. In order to fulfill Tier 4i emissions, the main concern is on soot emission and, thus, the combustion chamber has been re-designed, through CFD simulations, leading to a better interaction between the flow field, the fuel spray and the piston bowl geometry. Particularly, through intake phase simulations, performed with the CFD code Fire v2009 v3, different intake ducts, with different swirl ratio, have been simulated in order to provide a flow field as realistic as possible for the combustion simulations. Through combustion process simulations, performed with the CFD code Kiva, by varying different parameters the interaction between the swirl flow field, generated by the intake duct, the reverse squish motion, and motions aerodynamically generated by spray has been investigated leading to the definition of a new engine lay-out. The study shows how, given the need of retarded injection for limiting NOx emission, the decrease of swirl ratio, when combined with a proper piston bowl design, allows a significant decrease of soot emissions and the achievement of Tier 4i emission standard.


Author(s):  
Petar Kazakov ◽  
Atanas Iliev ◽  
Emil Marinov

Over the decades, more attention has been paid to emissions from the means of transport and the use of different fuels and combustion fuels for the operation of internal combustion engines than on fuel consumption. This, in turn, enables research into products that are said to reduce fuel consumption. The report summarizes four studies of fuel-related innovation products. The studies covered by this report are conducted with diesel fuel and usually contain diesel fuel and three additives for it. Manufacturers of additives are based on already existing studies showing a 10-30% reduction in fuel consumption. Comparative experimental studies related to the use of commercially available diesel fuel with and without the use of additives have been performed in laboratory conditions. The studies were carried out on a stationary diesel engine СМД-17КН equipped with brake КИ1368В. Repeated results were recorded, but they did not confirm the significant positive effect of additives on specific fuel consumption. In some cases, the factors affecting errors in this type of research on the effectiveness of fuel additives for commercial purposes are considered. The reasons for the positive effects of such use of additives in certain engine operating modes are also clarified.


Sign in / Sign up

Export Citation Format

Share Document