Experimental Investigation of Cold Start Emission using Dynamic Catalytic Converter with Pre-Catalyst and Hot Air Injector on a Multi Cylinder Spark Ignition Engine

Author(s):  
Ganesan Mahadevan ◽  
Sendilvelan Subramanian
Author(s):  
M. Ganesan ◽  
S. Sendilvelan

Control of harmful emissions during cold start of the engine has become a challenging task over the years due to the ever increasing stringent emission norms. Positioning of the catalytic converter closer to the exhaust manifold is an efficient way of achieving rapid light-off temperature. On the other hand, the resulting higher thermal loading under high-load engine operation may substantially cause thermal degradation and accelerate catalyst ageing. The objective of the present work is to reduce the light-off time of the catalyst and at the same time to reduce the thermal degradation and ageing of the catalyst to the minimum possible extent. In the present work two innovative approaches namely Parallel Catalytic Converter System (PCCS) and Telescopic Catalytic Converter System (TCCS) have been adopted to reduce the light-off time of the catalyst. The tests were conducted on a 4 cylinder Spark Ignition Engine under cold start condition. It was established that considerable reduction in the light-off time was achieved by using TCCS. Further reduction in the light-off time was achieved by using pre catalysts (40%vol. & 20%vol.) and hot air injection. It has been found that 13% reduction in CO light-off time was achieved with pre-catalyst (40%vol.), 50% reduction with pre-catalyst (20%vol.) and 66% reduction with hot air injector system, when compared to TCCS. Also 14% reduction in HC light-off time was achieved with pre-catalyst (40%vol.), 43% reduction with pre-catalyst (20%vol.) and 63% reduction with hot air injection system, when compared to TCCS. It was also established that light-off time of TCCS can be brought down to 10 seconds using hot air injection.


2015 ◽  
Vol 162 (3) ◽  
pp. 41-51
Author(s):  
Barbara WORSZTYNOWICZ ◽  
Andrzej UHRYŃSKI

The article tackles the issues related to a process of heating of three way catalytic converter during the cold start and the heating of the spark ignition engine. The measurements on the test bench were performed, taking into consideration how engine works directly after the start, on the idle speed and under the load, during which the temperature of the exhaust gases in the exhaust system and coolant on the cylinder head were measured. At the same time the track of the heat state of the catalytic converter was monitored using thermo-vision camera. The results of the measurements were presented as charts and selected thermo-grams, qualitatively representing the issue of heating of the catalytic converter.


2021 ◽  
Author(s):  
Xiaoxi Zhang ◽  
Xiao Yu ◽  
Simon Leblanc ◽  
Ming Zheng ◽  
Jimi Tjong

Abstract Downsizing, turbocharging, and lean burn strategies offer improved fuel efficiency and engine-out emissions to that of conventional spark ignition engines. However, maintaining engine stability becomes difficult, especially at low load and low speed operation such as cold start conditions. Under cold start operation, the spark timing is retarded to rush catalyst warm-up temperature followed by advancing the spark timing for engine stability. In this sequence, securing ignition while using retarded spark timing is difficult because of the cold cylinder walls and low engine loads. Through previous investigations, the noval multiple ignition sites strategy demonstrated its capability to expend lean burn boundaries beyond traditional single core spark plug and improve cycle to cycle variation. In this work, multisite ignition is tested on a production 4-cylinder direct injection spark ignition engine. A large number of tests are performed on the engine to investigate the impact of ignition strategy on emissions and stability during catalytic converter warm up period as part of the cold-start operation. Results show that the three-core spark igniter shortens the ignition delay thus providing a wider stable spark timing window for stable engine operation. As a result, the concentration of unburnt fuel in the exhaust gas can be reduced before the catalyst reaches the light-off temperature.


Author(s):  
Makoto Koike ◽  
Tetsunori Suzuoki ◽  
Tadashi Takeuchi ◽  
Takayuki Homma ◽  
Satoshi Hariu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document