Experimental Analysis of Telescopic Catalytic Converter in a Petrol Engine to Reduce Cold Start Emission

Author(s):  
M. Ganesan ◽  
S. Sendilvelan

Control of harmful emissions during cold start of the engine has become a challenging task over the years due to the ever increasing stringent emission norms. Positioning of the catalytic converter closer to the exhaust manifold is an efficient way of achieving rapid light-off temperature. On the other hand, the resulting higher thermal loading under high-load engine operation may substantially cause thermal degradation and accelerate catalyst ageing. The objective of the present work is to reduce the light-off time of the catalyst and at the same time to reduce the thermal degradation and ageing of the catalyst to the minimum possible extent. In the present work two innovative approaches namely Parallel Catalytic Converter System (PCCS) and Telescopic Catalytic Converter System (TCCS) have been adopted to reduce the light-off time of the catalyst. The tests were conducted on a 4 cylinder Spark Ignition Engine under cold start condition. It was established that considerable reduction in the light-off time was achieved by using TCCS. Further reduction in the light-off time was achieved by using pre catalysts (40%vol. & 20%vol.) and hot air injection. It has been found that 13% reduction in CO light-off time was achieved with pre-catalyst (40%vol.), 50% reduction with pre-catalyst (20%vol.) and 66% reduction with hot air injector system, when compared to TCCS. Also 14% reduction in HC light-off time was achieved with pre-catalyst (40%vol.), 43% reduction with pre-catalyst (20%vol.) and 63% reduction with hot air injection system, when compared to TCCS. It was also established that light-off time of TCCS can be brought down to 10 seconds using hot air injection.

2021 ◽  
Author(s):  
Xiaoxi Zhang ◽  
Xiao Yu ◽  
Simon Leblanc ◽  
Ming Zheng ◽  
Jimi Tjong

Abstract Downsizing, turbocharging, and lean burn strategies offer improved fuel efficiency and engine-out emissions to that of conventional spark ignition engines. However, maintaining engine stability becomes difficult, especially at low load and low speed operation such as cold start conditions. Under cold start operation, the spark timing is retarded to rush catalyst warm-up temperature followed by advancing the spark timing for engine stability. In this sequence, securing ignition while using retarded spark timing is difficult because of the cold cylinder walls and low engine loads. Through previous investigations, the noval multiple ignition sites strategy demonstrated its capability to expend lean burn boundaries beyond traditional single core spark plug and improve cycle to cycle variation. In this work, multisite ignition is tested on a production 4-cylinder direct injection spark ignition engine. A large number of tests are performed on the engine to investigate the impact of ignition strategy on emissions and stability during catalytic converter warm up period as part of the cold-start operation. Results show that the three-core spark igniter shortens the ignition delay thus providing a wider stable spark timing window for stable engine operation. As a result, the concentration of unburnt fuel in the exhaust gas can be reduced before the catalyst reaches the light-off temperature.


2018 ◽  
Vol 184 ◽  
pp. 01013
Author(s):  
Corneliu Cofaru ◽  
Mihaela Virginia Popescu

The paper presents the research designed to develop a HCCI (Homogenous Charge Compression Ignition) engine starting from a spark ignition engine platform. The chosen test engine was a single cylinder, four strokes provided with a carburettor. The results of experimental research data obtained on this version were used as a baseline for the next phase of the research. In order to obtain the HCCI configuration, the engine was modified, as follows: the compression ratio was increased from 9.7 to 11.5 to ensure that the air – fuel mixture auto-ignite and to improve the engine efficiency; the carburettor was replaced by a direct fuel injection system in order to control precisely the fuel mass per cycle taking into account the measured intake air-mass; the valves shape were modified to provide a safety engine operation by ensuring the provision of sufficient clearance beetween the valve and the piston; the exchange gas system was changed from fixed timing to variable valve timing to have the possibilities of modification of quantities of trapped burnt gases. The cylinder processes were simulated on virtual model. The experimental research works were focused on determining the parameters which control the combustion timing of HCCI engine to obtain the best energetic and ecologic parameters.


2015 ◽  
Vol 162 (3) ◽  
pp. 41-51
Author(s):  
Barbara WORSZTYNOWICZ ◽  
Andrzej UHRYŃSKI

The article tackles the issues related to a process of heating of three way catalytic converter during the cold start and the heating of the spark ignition engine. The measurements on the test bench were performed, taking into consideration how engine works directly after the start, on the idle speed and under the load, during which the temperature of the exhaust gases in the exhaust system and coolant on the cylinder head were measured. At the same time the track of the heat state of the catalytic converter was monitored using thermo-vision camera. The results of the measurements were presented as charts and selected thermo-grams, qualitatively representing the issue of heating of the catalytic converter.


Author(s):  
F. Lacin ◽  
M. Zhuang

The catalytic converter is an important device for the emission control from spark-ignition engines. Several concurrent physical/chemical processes such as convective heat transfer, gas phase chemical reactions, surface reactions, flow oscillations, water vapor condensation and diffusion mechanisms add complexity to modeling of flows inside catalytic converters. Under cold-start conditions, the fact that catalytic converters do not become operational during the initial operation allows a significant fraction of the overall pollutants to be emitted. In the present study, these complex transient phenomena have been examined using a previously validated numerical model.1 The numerical results suggest new material-dependent designs to improve both the transient conversion characteristics and the steady state conversion efficiency of catalytic converters. Moreover, from our model calculations, we have observed that for a given amount of the noble metal catalysts the light-off time and the monolith temperature are greatly affected by the noble-metal distribution along the honeycomb walls of a monolith. The results of the numerical simulations indicate that the light-off time is shortened by approximately 35% for CO, H2 and C3H6 when replacing a traditional homogeneous noble metal distribution by a simple, step-function distribution.2 The emissions of CO, H2 and C3H6 from the exhaust gas are, therefore, reduced without increasing the cost of noble metal catalysts used in converters. In order to avoid further deterioration of catalysts due to the thermal effects, an optimum noble metal distribution needs to be investigated with the understanding that the optimum noble metal distribution proposed has to be practical for the manufacturing. Since the main source of the exhaust emissions is generated during the cold-start period of the converter operation, the reduction of emissions shown in our model calculations is quite substantial.


2015 ◽  
Author(s):  
Maddali V. S. Murali Krishna ◽  
Ch. Indira Priyadarsini ◽  
Y. Nagini ◽  
S. Naga Sarada ◽  
P. Usha Sri ◽  
...  

This paper reports performance evaluation of four–stroke, single–cylinder, water cooled, variable compression ratio (3–9), variable speed (2200–3000 rpm) spark ignition engine with brake power of 2.2 kW at a speed of 3000 rpm with copper coated combustion chamber (CCE) [copper-(thickness, 300 μ) was coated on piston crown, inner side of liner and cylinder head] with alcohol blended gasoline [20% methanol with 80% gasoline; 20% of ethanol with 80% of gasoline by volume) with varied spark ignition timing provided with catalytic converter with sponge iron as catalyst along with air injection and compared with engine with conventional combustion chamber (CE) with gasoline operation. Performance parameters and exhaust emissions (CO and UBHC) were evaluated at full load operation of the engine. Aldehydes (formaldehyde and acetaldehyde) were measured by wet method of 2,4, dinitrophenyle method at full load operation of the engine. Alcohol blended gasoline operation improved performance and reduced CO and UBHC emissions when compared with gasoline operation with both versions of the combustion chamber. At recommended and injection timing, CCE with test fuels improved performance and reduced pollution levels, when compared with CE. Catalytic converter with sponge iron as catalyst along with air injection significantly reduced pollutants with test fuels.


2015 ◽  
Vol 3 (2) ◽  
pp. 15-27
Author(s):  
Ahmed A. Imram ◽  
Humam K. Jalghef ◽  
Falah F. Hatem

     The effect of introducing ramp with a cylindrical slot hole on the film cooling effectiveness has been investigated experimentally and numerically. The film cooling effectiveness measurements are obtained experimentally. A test study was performed at a single mainstream with Reynolds number 76600 at three different coolant to mainstream blowing ratios 1.5, 2, and 3. Numerical simulation is introduced to primarily estimate the best ramp configurations and to predict the behavior of the transport phenomena in the region linked closely to the interaction between the coolant air injection and the hot air mainstram flow. The results showed that using ramps with trench cylindrical holes would enhanced the overall film cooling effectiveness by 83.33% compared with baseline model at blowing ratio of 1.5, also  the best overall flim cooling effectevness was obtained at blowing ratio of 2 while it is reduced at blowing ratio of 3.


Author(s):  
Makoto Koike ◽  
Tetsunori Suzuoki ◽  
Tadashi Takeuchi ◽  
Takayuki Homma ◽  
Satoshi Hariu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document