Numerical Investigation to Fuel Injection Strategy and Thermal Condition Impacts on GCI Combustion at Low and Medium Loads Using CFD

2021 ◽  
Author(s):  
Jinsu Kim ◽  
Harold Sun ◽  
Yu Zhang ◽  
Hailin Li
Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3717
Author(s):  
Nikita Zuev ◽  
Andrey Kozlov ◽  
Alexey Terenchenko ◽  
Kirill Karpukhin ◽  
Ulugbek Azimov

Using biodiesel fuel in diesel engines for heavy-duty transport is important to meet the stringent emission regulations. Biodiesel is an oxygenated fuel and its physical and chemical properties are close to diesel fuel, yet there is still a need to analyze and tune the fuel injection parameters to optimize the combustion process and emissions. A four-injections strategy was used: two pilots, one main and one post injection. A highly advanced SOI decreases the NOx and the compression work but makes the combustion process less efficient. The pilot injection fuel mass influences the combustion only at injection close to the top dead center during the compression stroke. The post injection has no influence on the compression work, only on the emissions and the indicated work. An optimal injection strategy was found to be: pilot SOI 19.2 CAD BTDC, pilot injection fuel mass 25.4%; main SOI 3.7 CAD BTDC, main injection fuel mass 67.3% mg; post SOI 2 CAD ATDC, post injection fuel mass 7.3% (the injection fuel mass is given as a percentage of the total fuel mass injected). This allows the indicated work near the base case level to be maintained, the pressure rise rate to decrease by 20% and NOx emissions to decrease by 10%, but leads to a 5% increase in PM emissions.


2008 ◽  
Vol 2008 ◽  
pp. 1-13 ◽  
Author(s):  
U. Wagner ◽  
P. Eckert ◽  
U. Spicher

Up to now, diesel engines with direct fuel injection are the propulsion systems with the highest efficiency for mobile applications. Future targets in reducingCO2-emissions with regard to global warming effects can be met with the help of these engines. A major disadvantage of diesel engines is the high soot and nitrogen oxide emissions which cannot be reduced completely with only engine measures today. The present paper describes two different possibilities for the simultaneous in-cylinder reduction of soot and nitrogen oxide emissions. One possibility is the optimization of the injection process with a new injection strategy the other one is the use of water diesel emulsions with the conventional injection system. The new injection strategy for this experimental part of the study overcomes the problem of increased soot emissions with pilot injection by separating the injections spatially and therefore on the one hand reduces the soot formation during the early stages of the combustion and on the other hand increases the soot oxidation later during the combustion. Another method to reduce the emissions is the introduction of water into the combustion chamber. Emulsions of water and fuel offer the potential to simultaneously reduceNOxand soot emissions while maintaining a high-thermal efficiency. This article presents a theoretical investigation of the use of fuel-water emulsions in DI-Diesel engines. The numerical simulations are carried out with the 3D-CFD code KIVA3V. The use of different water diesel emulsions is investigated and assessed with the numerical model.


2005 ◽  
Author(s):  
Ali Mohammadi ◽  
Takuji Ishiyama ◽  
Takaaki Kakuta ◽  
Sung-Sub Kee

Author(s):  
Sungjun Yoon ◽  
Hongsuk Kim ◽  
Daesik Kim ◽  
Sungwook Park

Stringent emission regulations (e.g., Euro-6) force automotive manufacturers to equip DPF (diesel particulate filter) on diesel cars. Generally, post injection is used as a method to regenerate DPF. However, it is known that post injection deteriorates specific fuel consumption and causes oil dilution for some operating conditions. Thus, an injection strategy for regeneration becomes one of key technologies for diesel powertrain equipped with a DPF. This paper presents correlations between fuel injection strategy and exhaust gas temperature for DPF regeneration. Experimental apparatus consists of a single cylinder diesel engine, a DC dynamometer, an emission test bench, and an engine control system. In the present study, post injection timing covers from 40 deg aTDC to 110 deg aTDC and double post injection was considered. In addition, effects of injection pressures were investigated. The engine load was varied from low-load to mid-load and fuel amount of post injection was increased up to 10mg/stk. Oil dilution during fuel injection and combustion processes were estimated by diesel loss measured by comparing two global equivalences ratios; one is measured from Lambda sensor installed at exhaust port, the other one is estimated from intake air mass and injected fuel mass. In the present study, the differences in global equivalence ratios were mainly caused from oil dilution during post injection. The experimental results of the present study suggest an optimal engine operating conditions including fuel injection strategy to get appropriate exhaust gas temperature for DPF regeneration. Experimental results of exhaust gas temperature distributions for various engine operating conditions were summarized. In addition, it was revealed that amounts of oil dilution were reduced by splitting post injection (i.e., double post injection). Effects of injection pressure on exhaust gas temperature were dependent on combustion phasing and injection strategies.


Author(s):  
Sungjun Yoon ◽  
Hongsuk Kim ◽  
Daesik Kim ◽  
Sungwook Park

Stringent emission regulations (e.g., Euro-6) have forced automotive manufacturers to equip a diesel particulate filter (DPF) on diesel cars. Generally, postinjection is used as a method to regenerate the DPF. However, it is known that postinjection deteriorates the specific fuel consumption and causes oil dilution for some operating conditions. Thus, an injection strategy for regeneration is one of the key technologies for diesel powertrains equipped with a DPF. This paper presents correlations between the fuel injection strategy and exhaust gas temperature for DPF regeneration. The experimental apparatus consists of a single-cylinder diesel engine, a DC dynamometer, an emission test bench, and an engine control system. In the present study, the postinjection timing was in the range of 40 deg aTDC to 110 deg aTDC and double postinjection was considered. In addition, the effects of the injection pressure were investigated. The engine load was varied among low load to midload conditions, and the amount of fuel of postinjection was increased up to 10 mg/stk. The oil dilution during the fuel injection and combustion processes was estimated by the diesel loss measured by comparing two global equivalences ratios: one measured from a lambda sensor installed at the exhaust port and one estimated from the intake air mass and injected fuel mass. In the present study, the differences of the global equivalence ratios were mainly caused by the oil dilution during postinjection. The experimental results of the present study suggest optimal engine operating conditions including the fuel injection strategy to obtain an appropriate exhaust gas temperature for DPF regeneration. The experimental results of the exhaust gas temperature distributions for various engine operating conditions are discussed. In addition, it was revealed that the amount of oil dilution was reduced by splitting the postinjection (i.e., double postinjection). The effects of the injection pressure on the exhaust gas temperature were dependent on the combustion phasing and injection strategies.


Sign in / Sign up

Export Citation Format

Share Document