Effects of Ethanol-Blended Fuel on Combustion Characteristics, Gaseous and Particulate Emissions in Gasoline Direct Injection (GDI) Engines

2021 ◽  
Author(s):  
Jiawei Lai ◽  
Kok Foong Lee ◽  
Jun Hou Yap ◽  
Bijan Yadollahi ◽  
Amit Bhave ◽  
...  
2018 ◽  
Vol 141 (2) ◽  
Author(s):  
Nikhil Sharma ◽  
Rashmi A. Agarwal ◽  
Avinash Kumar Agarwal

Direct injection spark ignition or gasoline direct injection (GDI) engines are superior in terms of relatively higher thermal efficiency and power output compared to multipoint port fuel injection engines and direct injection diesel engines. In this study, a 500 cc single cylinder GDI engine was used for experiments. Three gasohol blends (15% (v/v) ethanol/methanol/butanol with 85% (v/v) gasoline) were chosen for this experimental study and were characterized to determine their important fuel properties. For particulate investigations, exhaust particles were collected on a quartz filter paper using a partial flow dilution tunnel. Comparative investigations for particulate mass emissions, trace metal concentrations, Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR) analyses, and high-resolution transmission electron microscopy (HR-TEM) imaging of the particulate samples collected from different test fuels at different engine loads were performed. For majority of the experimental conditions, gasohols showed relatively lower trace metal concentration in particulates compared to gasoline. HR-TEM images showed that higher engine loads and presence of oxygen in the test fuels increased the soot reactivity. Multicore shells like structures were visible in the HR-TEM images due to growth of nuclei, and rapid soot formation due to relatively higher temperature and pressure environment of the engine combustion chamber. Researches world-over are trying to reduce particulate emissions from GDI engines; however there is a vast research gap for such investigations related to gasohol fueled GDI engines. This paper critically assesses and highlights comparative morphological characteristics of gasohol fueled GDI engine.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Hoseung Yi ◽  
Jihwan Seo ◽  
Young Soo Yu ◽  
Yunsung Lim ◽  
Sanguk Lee ◽  
...  

AbstractGasoline direct injection (GDI) engines emit less carbon dioxide (CO2) than port fuel injection (PFI) engines when fossil fuel conditions are the same. However, GDI engines emit more ultrafine particulate matter, which can have negative health effects, leading to particulate emission regulations. To satisfy these regulations, various studies have been done to reduce particulate matter, and several studies focused on lubricants. This study focuses on the influence of lubricant on the formation of particulate matter and its effect on particulate emissions in GDI engines. An instrumented, combustion and optical singe-cylinder GDI engine fueled by four different lubricant-gasoline blends was used with various injection conditions. Combustion experiments were used to determine combustion characteristics, and gaseous emissions indicated that the lubricant did not influence mixture homogeneity but had an impact on unburned fuels. Optical experiments showed that the lubricant did not influence spray but did influence wall film formation during the injection period, which is a major factor affecting particulate matter generation. Particulate emissions indicated that lubricant included in the wall film significantly affected PN emissions depending on injection conditions. Additionally, the wall film influenced by the lubricant affected the overall particle size and its distribution.


Author(s):  
Hyun Kyu Suh ◽  
Hyun Gu Roh ◽  
Chang Sik Lee

The aim of this work is to investigate the effect of the blending ratio and pilot injection on the spray and combustion characteristics of biodiesel fuel and compare these factors with those of diesel fuel in a direct injection common-rail diesel engine. In order to study the factors influencing the spray and combustion characteristics of biodiesel fuel, experiments involving exhaust emissions and engine performance were conducted at various biodiesel blending ratios and injection conditions for engine operating conditions. The macroscopic and microscopic spray characteristics of biodiesel fuel, such as injection rate, split injection effect, spray tip penetration, droplet diameter, and axial velocity distribution, were compared with the results from conventional diesel fuel. For biodiesel blended fuel, it was revealed that a higher injection pressure is needed to achieve the same injection rate at a higher blending ratio. The spray tip penetration of biodiesel fuel was similar to that of diesel. The atomization characteristics of biodiesel show that it has higher Sauter mean diameter and lower spray velocity than conventional diesel fuel due to high viscosity and surface tension. The peak combustion pressures of diesel and blending fuel increased with advanced injection timing and the combustion pressure of biodiesel fuel is higher than that of diesel fuel. As the pilot injection timing is retarded to 15deg of BTDC that is closed by the top dead center, the dissimilarities of diesel and blending fuels combustion pressure are reduced. It was found that the pilot injection enhanced the deteriorated spray and combustion characteristics of biodiesel fuel caused by different physical properties of the fuel.


2000 ◽  
Vol 1 (2) ◽  
pp. 147-161 ◽  
Author(s):  
J Reissing ◽  
H Peters ◽  
J. M. Kech ◽  
U Spicher

Gasoline direct injection (GDI) spark ignition engine technology is advancing at a rapid rate. The development and optimization of GDI engines requires new experimental methods and numerical models to analyse the in-cylinder processes. Therefore the objective of this paper is to present numerical and experimental methods to analyse the combustion process in GDI engines. The numerical investigation of a four-stroke three-valve GDI engine was performed with the code KIVA-3V [1]. For the calculation of the turbulent combustion a model for partially premixed combustion, developed and implemented by Kech [4], was used. The results of the numerical investigation are compared to experimental results, obtained using an optical fibre technique in combination with spectroscopic temperature measurements under different engine conditions. This comparison shows good agreement in temporal progression of pressure. Both the numerical simulation and the experimental investigation predicted comparable combustion phenomena.


2012 ◽  
Vol 588-589 ◽  
pp. 1598-1601 ◽  
Author(s):  
Xue Jun Li ◽  
Wei Hong ◽  
Yan Su

The gasoline direct injection (GDI) engine is a highly non-linear and a delayed system. The engine modle with time-delays is derived. The delays consist of an intake to torque production state delay and a network -induced interval delay. Base on the Liapunov-Krasovskii function, the criterion of interval delay control system is proposed, which ensure the idle speed control system is stability as well as robust. The simulation results show that the H∞ control has good robustness,which improves the stability of the idle speed of the GDI engine.


2013 ◽  
Vol 726-731 ◽  
pp. 2351-2354
Author(s):  
Guang Yang Liu ◽  
Yu Liu ◽  
Jian Xi Pang ◽  
Yan Qin

The objective of this research is to introduce the main gasoline direct injection vehicle particulate emissions characteristics researches in the world. Many investigations of particulate sizing and number count from gasoline direct injection (GDI) vehicles at different driving cycles were performed. Lots of particulate emissions are measured for FTP-75, NEDC, HWTET, SC03, and US06 cycles and these cycles can reflect different aspects of the particulate emissions. In some papers, both engine-out and tailpipe emissions were measured. Some investigation showed high sensitivity of the particulate number or size distribution to changes with the engine control parameters including A/F, ignition timing, EOI and so on.On the whole, the particulate number during different Driving Cycle is shown along with further analysis of the transient particulate emissions. The cold start process obviously affects particulate formation. Even beyond cold start, the particulate number emissions decrease as the test progresses. The results coming from the particulate measurement system sampling directly from the exhaust showed very rapid increases in particulate emissions during engine transients.


Sign in / Sign up

Export Citation Format

Share Document