Measurement of Flame Temperature Distribution in a D.I. Diesel Engine by Means of Image Analysis of Nega-Color Photographs

1981 ◽  
Author(s):  
Soo Kil Ahn ◽  
Yukio Matsui ◽  
Takeyuki Kamimoto ◽  
Shin Matsuoka
1992 ◽  
Author(s):  
Shinji Kobayashi ◽  
Takayuki Sakai ◽  
Toshio Nakahira ◽  
Masanori Komori ◽  
Kinji Tsujimura

Author(s):  
Ch. Steinbach ◽  
N. Ulibarri ◽  
M. Garay ◽  
H. Lu¨bcke ◽  
Th. Meeuwissen ◽  
...  

The NOx emissions of low NOx premix combustors are not only determined by the burner design, but also by the multi burner interaction and the related distribution of air and fuel flows to the individual burners. Often the factors that have a positive impact on NOx emission have a negative impact on the flame stability, so the main challenge is to find an optimum point with the lowest achievable NOx while maintaining good flame stability. The hottest flame zones are where most of the NOx is formed. Avoiding such zones in the combustor (by homogenization of the flame temperature) reduces NOx emissions significantly. Improving the flame stability and the combustion control allows the combustor to operate at a lower average flame temperature and NOx emissions. ALSTOM developed a combustion optimization package for the GT13E2. The optimization package development focused on three major issues: • Flame stability; • Homogenization of flame temperature distribution in the combustor; • Combustion control logic. The solution introduced consists of: • The reduction of cooling air entrainment in the primary flame zone for improved flame stability; • The optical measurement of the individual burner flame temperatures and their homogenization by burner tuning valves; • Closed loop control logic to control the combustion dependent on the pulsation signal. This paper shows how fundamental combustion research methods were applied to derive effective optimization measures. The flame temperature measurement technique will be presented along with results of the measurement and their application in homogenization of the combustor temperature distribution in an engine equipped with measures to improve flame stabilization. The main results achieved are: • Widening of the main burner group operation range; • Improved use of the low NOx operation range; • NOx reduction at the combustor pulsation limit and hence, large margins to the European emission limit (50 mg/m3 @ 15%O2).


Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 391 ◽  
Author(s):  
Miloš Rajković ◽  
Goran Malidža ◽  
Strahinja Stepanović ◽  
Marko Kostić ◽  
Kristina Petrović ◽  
...  

The main objective of this study was to identify optimal burner orientation for a newly designed flame cultivator by quantifying the flame temperature distributions of cross, back, and parallel position of burners at different heights of the soybean canopy (distance from the soil surface). Flame temperatures were measured within-row for three burner orientations at seven propane doses (20–100 kg/ha) and eight different canopy heights (0–18 cm above soil surface). Soybean plants in V3 growth stage were flamed with the same doses and burner orientations, and 28 days after treatment (DAT) crop injury (0%–100%), plant height (cm), dry matter (g) and grain yield (t/ha) were assessed. All three burner orientations had high flame temperatures at lower canopy heights (<6 cm high) that gradually decreased with increasing canopy height (6–18 cm). Measured temperatures ranged from 33 to 234 ℃ for cross flaming, 29 to 269 ℃ for back flaming and 23 to 155 ℃ for parallel flaming, with high variability in temperature patterns. Back flaming generated flame temperatures above 100℃ at a lower propane dose (27 kg/ha) compared to cross and parallel flaming (40 and 50 kg/ha). For all tested parameters, parallel and cross flaming had better impact on soybeans than back flaming, but for weed control in crop rows, cross flaming is recommended.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Saravanan Duraiarasan ◽  
Rasoul Salehi ◽  
Anna Stefanopoulou ◽  
Siddharth Mahesh ◽  
Marc Allain

Abstract Stringent NOX emission norm for heavy duty vehicles motivates the use of predictive models to reduce emissions of diesel engines by coordinating engine parameters and aftertreatment. In this paper, a physics-based control-oriented NOX model is presented to estimate the feedgas NOX for a diesel engine. This cycle-averaged NOX model is able to capture the impact of all major diesel engine control variables including the fuel injection timing, injection pressure, and injection rate, as well as the effect of cylinder charge dilution and intake pressure on the emissions. The impact of the cylinder charge dilution controlled by the engine exhaust gas recirculation (EGR) in the highly diluted diesel engine of this work is modeled using an adiabatic flame temperature predictor. The model structure is developed such that it can be embedded in an engine control unit without any need for an in-cylinder pressure sensor. In addition, details of this physics-based NOX model are presented along with a step-by-step model parameter identification procedure and experimental validation at both steady-state and transient conditions. Over a complete federal test procedure (FTP) cycle, on a cumulative basis the model prediction was more than 93% accurate.


Author(s):  
Yasuo Harigaya ◽  
Michiyoshi Suzuki ◽  
Masaaki Takiguchi

Abstract This paper describes that an analysis of oil film thickness on a piston ring of diesel engine. The oil film thickness has been performed by using Reynolds equation and unsteady, two-dimensional (2-D) energy equation with a heat generated from viscous dissipation. The temperature distribution in the oil film is calculated by using the energy equation and the mean oil film temperature is computed. Then the viscosity of oil film is estimated by using the mean oil film temperature. The effect of oil film temperature on the oil film thickness of a piston ring was examined. This model has been verified with published experimental results. Moreover, the heat flow at ring and liner surfaces was examined. As a result, the oil film thickness could be calculated by using the viscosity estimated from the mean oil film temperature and the calculated value is agreement with the measured values.


Sign in / Sign up

Export Citation Format

Share Document