Finite Element Simulation of Wheel-Rail Interaction: Technical Note

Author(s):  
Shiv Prakash Dubey ◽  
Satish C. Sharma ◽  
Suraj P. Harsha

This paper deals with quasi-static analysis of wheel-rail interaction. The model has been developed for analysing the contact patches behaviour, pressure distribution, von mises stress and strain. A solid model has been developed using SOLIDWORKS on the basis of UIC-60 rail profile and S-1002 wheel profile. Finite element analysis of the solid model has been done using ANSYS software. It has been observed that wheel-rail interaction is nonlinear and exceeded the yield strength of wheel material. The analysis of the worn thread of wheel has enabled the identification of the contact patches and critical sections of the wheel-rail interface.

Author(s):  
Nurullah Türker ◽  
Hümeyra Tercanlı Alkış ◽  
Steven J Sadowsky ◽  
Ulviye Şebnem Büyükkaplan

An ideal occlusal scheme plays an important role in a good prognosis of All-on-Four applications, as it does for other implant therapies, due to the potential impact of occlusal loads on implant prosthetic components. The aim of the present three-dimensional (3D) finite element analysis (FEA) study was to investigate the stresses on abutments, screws and prostheses that are generated by occlusal loads via different occlusal schemes in the All-on-Four concept. Three-dimensional models of the maxilla, mandible, implants, implant substructures and prostheses were designed according to the All-on-Four concept. Forces were applied from the occlusal contact points formed in maximum intercuspation and eccentric movements in canine guidance occlusion (CGO), group function occlusion (GFO) and lingualized occlusion (LO). The von Mises stress values for abutment and screws and deformation values for prostheses were obtained and results were evaluated comparatively. It was observed that the stresses on screws and abutments were more evenly distributed in GFO. Maximum deformation values for prosthesis were observed in the CFO model for lateral movement both in the maxilla and mandible. Within the limits of the present study, GFO may be suggested to reduce stresses on screws, abutments and prostheses in the All-on-Four concept.


2021 ◽  
Vol 11 (6) ◽  
pp. 2547 ◽  
Author(s):  
Carlo Prati ◽  
João Paulo Mendes Tribst ◽  
Amanda Maria de Oliveira Dal Piva ◽  
Alexandre Luiz Souto Borges ◽  
Maurizio Ventre ◽  
...  

The aim of the present investigation was to calculate the stress distribution generated in the root dentine canal during mechanical rotation of five different NiTi endodontic instruments by means of a finite element analysis (FEA). Two conventional alloy NiTi instruments F360 25/04 and F6 Skytaper 25/06, in comparison to three heat treated alloys NiTI Hyflex CM 25/04, Protaper Next 25/06 and One Curve 25/06 were considered and analyzed. The instruments’ flexibility (reaction force) and geometrical features (cross section, conicity) were previously investigated. For each instrument, dentine root canals with two different elastic moduli(18 and 42 GPa) were simulated with defined apical ratios. Ten different CAD instrument models were created and their mechanical behaviors were analyzed by a 3D-FEA. Static structural analyses were performed with a non-failure condition, since a linear elastic behavior was assumed for all components. All the instruments generated a stress area concentration in correspondence to the root canal curvature at approx. 7 mm from the apex. The maximum values were found when instruments were analyzed in the highest elastic modulus dentine canal. Strain and von Mises stress patterns showed a higher concentration in the first part of curved radius of all the instruments. Conventional Ni-Ti endodontic instruments demonstrated higher stress magnitudes, regardless of the conicity of 4% and 6%, and they showed the highest von Mises stress values in sound, as well as in mineralized dentine canals. Heat-treated endodontic instruments with higher flexibility values showed a reduced stress concentration map. Hyflex CM 25/04 displayed the lowest von Mises stress values of, respectively, 35.73 and 44.30 GPa for sound and mineralized dentine. The mechanical behavior of all rotary endodontic instruments was influenced by the different elastic moduli and by the dentine canal rigidity.


Author(s):  
Osezua Obehi Ibhadode ◽  
Ishaya Musa Dagwa ◽  
Akii Okonigbon Akhaehomen Ibhadode

Calibration curves of a multi-component dynamometer is of essence in machining operations in a lathe machine as they serve to provide values of force and stress components for cutting tool development and optimization. In this study, finite element analysis has been used to obtain the deflection and stress response of a two component cutting tool lathe dynamometer, for turning operation, when the cutting tool is subjected to cutting and thrust forces from 98.1N to 686.7N (10 to 70kg-wts), at intervals of 98.1N(10kg-wt). By obtaining the governing equation, modeling the dynamometer assembly, defining boundary conditions, generating the assembly mesh, and simulating in Inventor Professional; horizontal and vertical components of deflection by the dynamometer were read off for three different loading scenarios. For these three loading scenarios, calibration plots by experiment compared with plots obtained from simulation by finite element analysis gave accuracies of 79%, 95%, 84% and 36%, 57%, 63% for vertical and horizontal deflections respectively. Also, plots of horizontal and vertical components of Von Mises stress against applied forces were obtained.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Charles Savoldelli ◽  
Elodie Ehrmann ◽  
Yannick Tillier

AbstractWith modern-day technical advances, high sagittal oblique osteotomy (HSOO) of the mandible was recently described as an alternative to bilateral sagittal split osteotomy for the correction of mandibular skeletal deformities. However, neither in vitro nor numerical biomechanical assessments have evaluated the performance of fixation methods in HSOO. The aim of this study was to compare the biomechanical characteristics and stress distribution in bone and osteosynthesis fixations when using different designs and placing configurations, in order to determine a favourable plating method. We established two finite element models of HSOO with advancement (T1) and set-back (T2) movements of the mandible. Six different configurations of fixation of the ramus, progressively loaded by a constant force, were assessed for each model. The von Mises stress distribution in fixations and in bone, and bony segment displacement, were analysed. The lowest mechanical stresses and minimal gradient of displacement between the proximal and distal bony segments were detected in the combined one-third anterior- and posterior-positioned double mini-plate T1 and T2 models. This suggests that the appropriate method to correct mandibular deformities in HSOO surgery is with use of double mini-plates positioned in the anterior one-third and posterior one-third between the bony segments of the ramus.


2020 ◽  
Vol 5 (10) ◽  
pp. 1288-1293
Author(s):  
Panagiotis J. Charitidis

The present study concerns with the finite element investigation of balanced aluminium single lap joints subjected to tensile loading. Epoxy adhesives were used for bonding having different nanoparticles rate in the epoxy resin (0.5, 1.0, 1.5 and to 2 wt. %, respectively). Two-dimensional (2D) finite element analysis has been employed to determine the peeling stress, von Mises stress, and the shear strain distribution across the midplane of the joints. The results mainly prove that the nanoparticles rate in the adhesive material directly affects the joint tensile strength. Nanocomposite adhesives present a higher failure load than that of neat adhesives. Furthermore, nanocomposite adhesive with 0.5 wt. % of nanoparticles generated strengths (shear and peeling strengths) more than neat adhesives, after which decreased by further addition of the nanoparticles.


2021 ◽  
Vol 4 (2) ◽  
Author(s):  
Mubni Nazar ◽  
Anggito Pringgo Tetuko ◽  
Djuhana Djuhana

Penelitian ini dilakukan untuk meningkatkan koefisien daya yang maksimal. Salah satunya dengan mengunakan kualitas sudu yang baik. Untuk mengoptimalkan fungsi turbin angin penulis menggunakan material sudu pada turbin angin dengan menggunakan Acrylonitrine Butadine Styrene (ABS). Oleh karena itu pada penelitian ini metode yang digunakan adalah metode Finite Element Analysis Simulasi yang dipilih adalah dynamic. Penelitian ini adalah pengujian kekuatan sudu turbin angin horizontal dengan variasi kecepatan angin 10 – 20 m/s ditinjau dari von mises stress dan displacement. Dari hasil simulasi kecepatan angin memiiki pengaruh terhadap distribusi stress dan displacement. Material yang digunakan masih berada di bawah batas kekuatan material, semakin besar gaya yang diberikan semakin besar nilai stress dan displacement. Pada hasil simulasi didapatkan nilai stress minimum 5.8 Pa stress maksimum 22.94 Sedangkan dalam pengujian displacement dihasilkan nilai minimum 1.27 m displacement maksimum 4.99 m.


2021 ◽  
Vol 11 (18) ◽  
pp. 8629
Author(s):  
Li-Ren Chang ◽  
Ya-Pei Hou ◽  
Ting-Sheng Lin

The effectiveness of a single four-hole plate (S4HP), perpendicularly oriented four-hole and two-hole plate (Per4H2HP), and perpendicularly oriented double two-hole plate (PerD2HP) for the fixation of a mandibular fracture was studied. A finite element analysis of the mandibular symphysis fractures treated with S4HP, Per4H2HP, and PerD2HP was performed. All surface nodes were fixed in the mandibular condyle region and occlusal muscle forces were applied. The maximal von Mises stress (MaxVMS) values of the plates, screws and screw holes were investigated. The displacement of the fracture site on the lower border of the mandibular symphysis was recorded. The displacement on the lower border of the fracture sites in the S4HP group was greater than that in the Per4H2HP group and the PerD2HP group. There was no eversion at the fracture site among all groups. Both the S4HP and Per4H2HP groups showed stress concentrations on the screws close to the fracture site. The MaxVMS increased when the number of screw holes on the mandibular anterior lower border decreased. The displacement of the fracture site and eversion with Per4H2HP and PerD2HP were far lower than those with S4HP. PerD2HP is a stable and green fixation technique for mandibular symphysis fractures.


2021 ◽  
Author(s):  
Sinan Yıldırım ◽  
Ufuk Çoban ◽  
Mehmet Çevik

Suspension linkages are one of the fundamental structural elements in each vehicle since they connect the wheel carriers i.e. axles to the body of the vehicle. Moreover, the characteristics of suspension linkages within a suspension system can directly affect driving safety, comfort and economics. Beyond these, all these design criteria are bounded to the package space of the vehicle. In last decades, suspension linkages have been focused on in terms of design development and cost reduction. In this study, a control arm of a diesel public bus was taken into account in order to get the most cost-effective design while improving the strength within specified boundary conditions. Due to the change of the supplier, the control arm of a rigid axle was redesigned to find an economical and more durable solution. The new design was analyzed first by the finite element analysis software Ansys and the finite element model of the control arm was validated by physical tensile tests. The outputs of the study demonstrate that the new design geometry reduces the maximum Von Mises stress 15% while being within the elastic region of the material in use and having found an economical solution in terms of supplier’s criteria.


Author(s):  
Z Yi ◽  
WZ Fu ◽  
MZ Li

In order to obtain a higher pressure capacity for the high-pressure die with a larger sample cavity, two types of two-layer split dies with a round cylinder and a quadrate cylinder were designed based on the conventional belt-type die. Finite element analysis was performed to investigate the stress distributions and pressure capacities of the high-pressure dies using a derived Mohr–Coulomb criterion and the von Mises criterion for the cylinder and supporting rings, respectively. As predicted by the finite element analysis results, in the two-layer split dies with a round cylinder, the stress state of the cylinder can be only slightly improved; and the von Mises stress of the first layer supporting ring can be hardly decreased. However, in the two-layer split dies with a quadrate cylinder and sample cavity, the stress state of the cylinder can be remarkably improved. Simultaneously, the von Mises stress of the supporting rings, especially for the first-layer supporting ring, can be also effectively decreased. The pressure capacities of the two-layer split dies with a round cylinder and a quadrate cylinder are 16.5% and 63.9% higher with respect to the conventional belt-type die.


2019 ◽  
Vol 10 (5) ◽  
pp. 678-691
Author(s):  
Intan Najwa Humaira Mohamed Haneef ◽  
Norhashimah Shaffiar ◽  
Yose Fachmi Buys ◽  
Abdul Malek Abd. Hamid

Purpose The internal fixation plate of bone fractures by using polylactic acid (PLA) has attracted the attention of many researchers, as it is biodegradable and biocompatible to the human body. However, its brittleness has led to implant fracture. On the contrary, polypropylene carbonate (PPC), which is also biodegradable and biocompatible, has an excellent elongation at break. The purpose of this paper is to compare the PLA fixation plate with the new fixation plate made up of PLA/PPC blends by using finite element analysis (FEA). Design/methodology/approach The mandible bone from CT data set and fixation plate was designed by using the MIMICS, Amira and Solidworks softwares. Abaqus software was used for FEA of PLA/PPC fixation plate applied on the fractured mandible bone. A model of mandibular bone with a fracture in the body was subjected to incisor load. The analysis was run to determine the von Mises stress, elongation of the fixation plate and the displacement of the fractured gap of PLA/PPC blends fixation plate. Findings The von Mises stress predicted that all the blend compositions were safe to be used as a fixation plate since the stress values were less than the yield strength. In addition, the stress value of the fixation plate was gradually decreased up to 20 percent when the amount of PPC increased to 30 percent. This indicates that the stress shielding effect was successfully reduced. The elongation of the fixation plate was gradually increased from 11.54 to 12.55 µm as the amount of PPC in the blends increased from 0 to 30 percent, thereby illustrating that the flexibility of the fixation plate was improved by the addition of PPC. Finally, the measured displacement of the fractured gap for all compositions of PLA/PPC blends fixation plate is less than 150 µm, which proves the likely success of fracture fixation by using the PLA/PPC blends. Research limitations/implications An optimum solution of PLA/PPC blends and another new material such as compatibilizer need to be introduced in the blends in order to improve the performance of PLA/PPC blends as a new material for a fixation plate. Besides, by using the same method of producing PLA/PPC blends, longer durations for in vitro degradation of PLA/PPC blends are essential to further understand the degradation behavior of the blends applied in the human body. Finally, it is also important to further test the mechanical strength of PLA/PPC blends during the degradation period to know the current strength of the implant in the healing process of the bone. Practical implications PLA fixation plate and screw can commercially be used in CMF surgery since they reduce cost because of the elimination of secondary surgery to remove the fixation plate and screw after the healing process. Social implications It is hoped that the advantages of this research will ensure the market of PLA product to continue expanding in medical application. Originality/value This study is one of the alternative ways for the biomedical researchers to improve the elongation break of PLA. Currently, many researchers focus on polymeric materials such as PLA, poly(glycolic) acid and polydioxanone blends, which were extensively being used in CMF surgery. However, the work on PLA/PPC blends to be used as one of the materials for the CMF fixation plate is very limited, if any. PPC, the proposed material for this research, will improve the mechanical performance of PLA fixation plate and screw to become more sustainable and flexible when applied on human mandible bone.


Sign in / Sign up

Export Citation Format

Share Document