Analysis of Dissipation Power from Multi-State Switchable Damper

Author(s):  
M.M.M. Salem ◽  
Mostafa M. Makrahy ◽  
M.R. Abd-El-Wahhab ◽  
Abd Allah S. Sharkawy

A considerable amount of vibration energy in automotive is worth of being harvested through power dissipation using regenerative suspension systems. In this study, the vehicle dynamics and energy dissipated from a Multi-State Switchable Damper (MSSD) based suspension for various vibration dynamic modes are assessed. Quantification of the energy dissipated in a MSSD is achieved through an experimental test at laboratory environment. The test results showed a linear relationship between the dissipated power and the damping modes.

2021 ◽  
Author(s):  
Abhishek Bhardwaj ◽  
SHIVAM SHANDILYA ◽  
Vijeet Singh

As observed in day-to-day life, driving on a bumpy road generates vibrational energy in an automobile which is then dissipated by the shock absorbers. But lately, as we progress into the energy-depleting, energy concern awake era, energy efficiency has been a serious concern within the automobile manufacturing industry since the production within the 1900s, researchers realized that the energy dissipated in traditional hydraulic shock absorbers is merit being recovered only within the middle of 1990s. Unlike traditional suspension systems which suppress the vibrations by dissipating the vibration energy into waste heat, the regenerative suspension with energy harvesting shock absorbers can convert the traditionally wasted energy into electricity. Several different techniques followed for the energy harvesting are listed and Two main devices namely rotary and linear electromagnetic generators are analyzed for comfort and handling, body acceleration with and without a generator, and also attempts is made to enunciate the importance of energy conservation techniques in an automobile.


2021 ◽  
Author(s):  
Abhishek Bhardwaj ◽  
SHIVAM SHANDILYA ◽  
Vijeet Singh

As observed in day-to-day life, driving on a bumpy road generates vibrational energy in an automobile which is then dissipated by the shock absorbers. But lately, as we progress into the energy-depleting, energy concern awake era, energy efficiency has been a serious concern within the automobile manufacturing industry since the production within the 1900s, researchers realized that the energy dissipated in traditional hydraulic shock absorbers is merit being recovered only within the middle of 1990s. Unlike traditional suspension systems which suppress the vibrations by dissipating the vibration energy into waste heat, the regenerative suspension with energy harvesting shock absorbers can convert the traditionally wasted energy into electricity. Several different techniques followed for the energy harvesting are listed and Two main devices namely rotary and linear electromagnetic generators are analyzed for comfort and handling, body acceleration with and without a generator, and also attempts is made to enunciate the importance of energy conservation techniques in an automobile.


1992 ◽  
Author(s):  
M. HOLLAND ◽  
P. EGGERS ◽  
S. GUINTO ◽  
R. STEVENSON ◽  
GREGORY COLOMBO

2021 ◽  
pp. 136943322098165
Author(s):  
Hossein Saberi ◽  
Farzad Hatami ◽  
Alireza Rahai

In this study, the co-effects of steel fibers and FRP confinement on the concrete behavior under the axial compression load are investigated. Thus, the experimental tests were conducted on 18 steel fiber-reinforced concrete (SFRC) specimens confined by FRP. Moreover, 24 existing experimental test results of FRP-confined specimens tested under axial compression are gathered to compile a reliable database for developing a mathematical model. In the conducted experimental tests, the concrete strength was varied as 26 MPa and 32.5 MPa and the steel fiber content was varied as 0.0%, 1.5%, and 3%. The specimens were confined with one and two layers of glass fiber reinforced polymer (GFRP) sheet. The experimental test results show that simultaneously using the steel fibers and FRP confinement in concrete not only significantly increases the peak strength and ultimate strain of concrete but also solves the issue of sudden failure in the FRP-confined concrete. The simulations confirm that the results of the proposed model are in good agreement with those of experimental tests.


Author(s):  
Paul A. Feenstra ◽  
Victor P. Janzen ◽  
Bruce A. W. Smith

Tests are being planned which will use AECL’s MR-3 Freon test facility and a Multi-Span U-Bend (MSUB) test rig to investigate the dynamics of tube vibration in two-phase flow, in particular those mechanisms that can cause excessive damage to steam-generator tubes. In preparation for the tests, free- and forced-vibration tests were conducted to measure the vibration energy dissipation (damping) of a single U-bend tube in air, with dry and wet anti-vibration bars, under a variety of tube-support conditions. This paper presents the relevant damping mechanisms and documents methods used to conduct the tests and to analyze the energy dissipated at the supports. Results indicate that for in-plane motion without tube-to-support contact, viscous damping related to wet AV B supports is much smaller than guidelines based on other types of supports suggest. To begin to examine the effects of the tube coming into contact with its supports, such as friction-related energy dissipation, the results of tests with light tube-to-support preloads are also presented.


2014 ◽  
Vol 59 (05) ◽  
pp. 1450045 ◽  
Author(s):  
SHEUE LI ONG ◽  
CHONG MUN HO

The untested assumption of linear relationship between stocks and bonds in previous empirical studies may lead to an invalid conclusion if the actual relationship is non-linear. The emphasis of this paper is on the effect of non-linearities on causal relationships between stocks and bonds in the cases of Malaysia and Singapore. Results from linearity tests indicate the existence of non-linearities in the dynamic relationship between stocks and bonds. Non-linear causality test results based on Taylor expansion suggest that non-linear causality flows from stocks to bonds and vice versa. The test further confirms that bonds with different maturity dates have different relationships with stocks.


2021 ◽  
pp. 449-458
Author(s):  
Junqing Xue ◽  
Davide Lavorato ◽  
Gabriele Fiorentino ◽  
Alessandro Vittorio Bergami ◽  
Bruno Briseghella ◽  
...  

2020 ◽  
Vol 48 (11) ◽  
pp. 4041-4047
Author(s):  
Cagdas Tunceroglu ◽  
Ugur Hasirci ◽  
Dincer Maden ◽  
Abdulkadir Balikci

Author(s):  
Jason C. Wilkes ◽  
Tim Allison

Numerous papers have investigated the behavior of dry-friction whip and whirl; most of them consider contact between a rotor and stator at a single location. For rotors running on multiple magnetic bearings, air bearings, or bushings, equipment failure may result in rub at more than one location. For these cases, it is important to have an analytical model that characterizes possible regions of two-point contact dry-friction whip and whirl. The current work presents a general model to predict possible whirl regions for multi-contact dry-friction whip and whirl, allowing for an arbitrary phase between contact locations. In theory this method can be applied to more than two contact locations; however, a two-point contact example case is developed and compared to results from an experimental test rig developed to demonstrate multi-contact dry-friction whip and whirl in the current work.


Sign in / Sign up

Export Citation Format

Share Document