In-Plane Vibration Damping of a U-Tube With Wet and Dry Flat-Bar Supports

Author(s):  
Paul A. Feenstra ◽  
Victor P. Janzen ◽  
Bruce A. W. Smith

Tests are being planned which will use AECL’s MR-3 Freon test facility and a Multi-Span U-Bend (MSUB) test rig to investigate the dynamics of tube vibration in two-phase flow, in particular those mechanisms that can cause excessive damage to steam-generator tubes. In preparation for the tests, free- and forced-vibration tests were conducted to measure the vibration energy dissipation (damping) of a single U-bend tube in air, with dry and wet anti-vibration bars, under a variety of tube-support conditions. This paper presents the relevant damping mechanisms and documents methods used to conduct the tests and to analyze the energy dissipated at the supports. Results indicate that for in-plane motion without tube-to-support contact, viscous damping related to wet AV B supports is much smaller than guidelines based on other types of supports suggest. To begin to examine the effects of the tube coming into contact with its supports, such as friction-related energy dissipation, the results of tests with light tube-to-support preloads are also presented.

Author(s):  
Paul Feenstra ◽  
Teguewinde Sawadogo ◽  
Bruce Smith ◽  
Victor Janzen ◽  
Anne McLellan ◽  
...  

Abstract Tests to study FluidElastic Instability (FEI) in an array of U-bend tubes were recently completed in the Multi-Span U-Bend (MSUB) test rig at Canadian Nuclear Laboratories (CNL). These tests were sponsored by the Electric Power Research Institute (EPRI) and were designed to study In-Plane (IP or streamwise) FEI of steam generator tubes in two-phase cross flow. This instability mechanism was first observed in previous research tests by Atomic Energy of Canada Limited (AECL). Although AECL planned additional research into IP FEI, this mechanism was not thought to be a serious practical concern until it recently caused severe damage to tubes in a new replacement steam-generator. The MSUB tests were conducted both with flows of air and two-phase liquid/vapour Refrigerant 134a. With 22 flexible U-bend tubes supported by a configurable flat-bar arrangement, the tests were focused on the effects of support geometry and tube-to-support interaction. Data was recorded from 33 dynamic signals from accelerometers, displacement probes, force transducers, and void-fraction probes. The paper describes the experimental test setup and reviews some of the initial test results and their implications for steam-generator users and researchers. Tests with two-phase Freon refrigerant (R-134a) are presented here.


2001 ◽  
Author(s):  
C. Frepoli ◽  
A. J. Ireland ◽  
L. E. Hochreiter ◽  
F. B. Cheung

Abstract The droplet injection experiments to be performed in a 7 × 7 rod bundle heat transfer test facility are being simulated using an advanced thermal hydraulics computer code called COBRA-TF. A current version of the code, which provides a three-dimensional, two-fluid, three-field representation of the two-phase flow, is modified to facilitate the simulation of the droplet field produced by the injection system in the test facility. The liquid phase is split into a continuous liquid field and droplet field where a separate momentum and mass equation is solved for each field, with the effects of spacer grids being properly accounted for. Pre-test analyses using the modified COBRA-TF code have been conducted for different injection conditions. Results indicate that there are specific ranges of conditions that can be simulated within the facility constraints to provide for validation of the dispersed flow film boiling models. The numerical results also show important effects of the spacer grids on the local heat transfer in the dispersed flow film boiling regime.


Author(s):  
Youjia Zhang ◽  
Weimin Ma ◽  
Shengjie Gong

This study is concerned with liquid film dynamics and stability of annular flow, which plays an important role in understanding film rupture and dryout in boiling heat transfer. The research work starts from designing and making a test facility which enables the visualization and measurement of liquid film dynamics. A confocal optical sensor is applied to track the evolution of film thickness. A horizontal rectangular channel made of glass is used as the test section. Deionized water and air are supplied into that channel in such a way that an initial stratified flow forms, with the liquid film on the bottom wall. The present study is focused on characterization of liquid film profile and dynamics in term of interfacial wave and shear force induced film rupture under adiabatic condition. Based on the experimental data and analysis, it is found that given a constant water flowrate, the average thickness of water film decreases with increasing air flowrate, while the interfacial wave of the two-phase flow is intensified. As the air flowrate reaches a critical value, a localized rupture of the water film occurs.


Author(s):  
C.E Blenkinsopp ◽  
J.R Chaplin

This paper describes detailed measurements and analysis of the time-varying distribution of void fractions in three different breaking waves under laboratory conditions. The measurements were made with highly sensitive optical fibre phase detection probes and document the rapid spatial and temporal evolutions of both the bubble plume generated beneath the free surface and the splashes above. Integral properties of the measured void fraction fields reveal a remarkable degree of similarity between characteristics of the two-phase flow in different breaker types as they evolve with time. Depending on the breaker type, the energy expended in entraining air and generating splash accounts for a minimum of between 6.5 and 14% of the total energy dissipated during wave breaking.


1998 ◽  
Vol 4 (4) ◽  
pp. 280-282
Author(s):  
Petras Baradokas

The paper discusses the problem of evaluating vibration energy dissipation of a composite material. It is suggested to express the dissipation cofficient in a line (2). The reduced component dissipation coefficients c i φi are the members of the line. The ratio of reduction c i , shows the proportion by which a separate component adds to the energy dissipation of the entire composition. By analysing the accumulated and dissipated strain energy of a composite material were obtained (6). On the basis of these expressions, formulas for calculating the dissipation coefficients of a three-layer bar and that with a galvanic covering were devised. The analysis made leads to the following conclusions: - the vibration energy dissipation coefficient of a composite material is equal to the sum of the reduced dissipation coefficients of the composition component materials; - the ratio of reduction c i depends on the value of the component accumulated energy; - for comparing separate components as to the energy dissipation, the product φ i E i should be used.


2019 ◽  
Vol 16 (1) ◽  
pp. 113-119
Author(s):  
Abdul Rauf ◽  
Syed Ismail Ahmad

The energy dissipated properties of normal and decalcified femur, rib and scapula bones of animals ox and camel have been studied by uniform bending technique. A hysteresis curve has been observed between the elevation in bone and load applied. It is observed that the energy dissipated as calculated from the hysteresis loop for rib is more than that of femur and scapula of ox and camel. It has been observed that the dissipation of energy in normal bone is less than that of decalcified bone under the same condition of applied load. The highest energy dissipation was observed in case of rib bone of camel compared to that of any other bone, rib of camel and scapula of ox dissipates maximum energy than femur bones. The study suggests that this technique is simple, elegant and inexpensive besides accurate in determining viscoelastic properties of bone.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yan-Shuang Yang ◽  
Wei Cheng ◽  
Zhan-Rong Zhang ◽  
Hao-Yuan Tian ◽  
Kai-Yue Li ◽  
...  

The energy dissipation usually occurs during rock failure, which can demonstrate the meso failure process of rock in a relatively accurate way. Based on the results of conventional triaxial compression experiments on the Jinping marble, a numerical biaxial compression model was established by PFC2D to observe the development of the micro-cracks and energy evolution during the test, and then the laws of crack propagation, energy dissipation and damage evolution were analyzed. The numerical simulation results indicate that both the crack number and the total energy dissipated during the loading process increase with confining pressures, which is basically consistent with the experiment results. Two damage variables were presented in terms of the density from other researchers’ results and energy dissipation from numerical simulation, respectively. The energy-based damage variable varies with axial strain in the shape of “S,” and approaches one more closely than that based on density at the final failure period. The research in the rock failure from the perspective of energy may further understand the mechanical behavior of rocks.


1985 ◽  
Vol 107 (4) ◽  
pp. 366-372 ◽  
Author(s):  
M. J. Anderson ◽  
D. A. Barta ◽  
M. R. Lindquist ◽  
E. J. Renkey ◽  
J. A. Ryan

Liquid Metal Fast Breeder Reactor pipe systems typically utilize a thicker insulation package than that used on water plant pipe systems. They are supported with special insulated pipe clamps. Mechanical snubbers are employed to resist seismic loads. Recent laboratory testing has indicated that these features provide significantly more damping than presently allowed by Regulatory Guide 1.61 for water plant pipe systems. This paper presents results of additional in-situ vibration tests conducted on Fast Flux Test Facility pipe systems. Pipe damping values obtained at various excitation levels are presented. Effects of filtering data to provide damping values at discrete frequencies and the alternate use of a single equivalent modal damping value are discussed. These tests further confirm that damping in typical LMFBR pipe systems is larger than presently used in pipe design. Although some increase in damping occurred with increased excitation amplitude, the effect was not significant. Recommendations are made to use increased damping values for seismic events in design of heavily insulated pipe systems.


2001 ◽  
Vol 1 (5-6) ◽  
pp. 393-402 ◽  
Author(s):  
J.Q.J.C. Verbeck ◽  
G.I.M. Worm ◽  
H. Futselaar ◽  
J.C. van Dijk

Dead-end ultrafiltration has proven itself as a technique for reclamation of backwash water of sand filters and as a pre-treatment step for spiral wound reverse osmosis. A direct result of dead-end filtration is a decreased flux caused by the accumulation of material in the membrane pores and on the membrane surface. Different cleaning techniques are used to remove this accumulated material. Recently a new technique has been introduced, the AirFlush. This technique makes use of air to create higher turbulence as compared to a water flush. At Delft University of Technology research has started into the fundamentals of the combined air- and water-flush. First a series of experiments has been carried out to determine the different flow patterns, followed by experiments to determine which air- and water-velocities give the best cleaning. Finally head loss experiments have been done to get information about the energy dissipated in the system. The results of the head loss experiments have been compared to the theoretical head loss calculated with the theory of heterogeneous two-phase flow.


Volume 3 ◽  
2004 ◽  
Author(s):  
Prem Chand ◽  
K. Govinda Rajulu ◽  
Y. Krishna Reddy

The paper presents a new approach to predict the two-phase performance of jet-pumps under interference conditions. We limit our study mainly to diffuser and transport regions of the jet pump. The five essential pre-requisites which form the backbone of our approach are a fairly generalized and accurate approach to (i) solid-fluid interaction, (ii) particle diffusion under generalized flow field, (iii) friction factor-Reynolds number equation, (iv) solid-fluid flow through ducts and (v) mixing of primary and secondary jets using the approach of Wang et al. [1] based on boundary layer concept. The extensive experimental data of several research workers along with fresh data generated on specially designed test-rig support the new approach.


Sign in / Sign up

Export Citation Format

Share Document