scholarly journals A V-Shape Optical Pin Interface for Board Level Optical Interconnect

2018 ◽  
Vol 10 (1) ◽  
pp. 20
Author(s):  
Nur Najahatul Huda Saris ◽  
Osamu Mikami ◽  
Azura Hamzah ◽  
Sumiaty Ambran ◽  
Chiemi Fujikawa

This paper introduces a new interface of an optical pin for Printed Circuit Boards (PCBs), the V-shape cut type which is an innovation from the 90-degree cut type optical pin. The effectiveness is determined by optical characteristics through OptiCAD and by experiment. The simulation used a model of ray tracing analysis which is a one to two (split) connection function model. For the experiment, a Polymer Optical Fibre (POF) V-shape optical pin has been fabricated. It was found that the V-shaped optical pin has a multi-branched function and is applicable to optical interconnection. Full Text: PDF ReferencesMikami, O., et al. Optical pin interface for 90-deg optical path conversion coupling to Printed Wiring Board. in Region 10 Conference (TENCON), 2016 IEEE. 2016. IEEE. CrossRef DeCusatis, C., Data center architectures, in Optical Interconnects for Data Centers. 2017, Elsevier. p. 3-41. CrossRef Duranton, M., D. Dutoit, and S. Menezo, Key requirements for optical interconnects within data centers, in Optical Interconnects for Data Centers. 2017, Elsevier. p. 75-94. CrossRef ITOH, Y., et al., Optical Coupling Characteristics of Optical Pin with 45° Micro Mirror for Optical Surface Mount Technology. Journal of The Japan Institute of Electronics Packaging, 2001. 4(6): p. 497-503. CrossRef Uchida, T. and O. Mikami, Optical surface mount technology. IEICE Transactions on Electronics, 1997. 80(1): p. 81-87. CrossRef Papakonstantinou, I., et al., Low-cost, precision, self-alignment technique for coupling laser and photodiode arrays to polymer waveguide arrays on multilayer PCBs. IEEE Transactions on Advanced Packaging, 2008. 31(3): p. 502-511. CrossRef Nakama, K., et al., Optical connection device. 2006, Google Patents. DirectLink Ramaswami, R., K. Sivarajan, and G. Sasaki, Optical networks: a practical perspective. 2009: Morgan Kaufmann. DirectLink Tong, X.C., Advanced materials for integrated optical waveguides. 2014: Springer. CrossRef

2021 ◽  
Author(s):  
Jingxi He ◽  
Yuqiao Cen ◽  
Yuanyuan Li ◽  
Shrouq Alelaumi ◽  
Daehan Won

Abstract This paper aims to propose a novel placing method, i.e., place-between-paste-and-pad (PB), for mini-scale passive components to enhance electronic assembly lines' yield. PB means a component is designed to be placed at the midpoint between the pastes and pads on the length direction while it aligns with the pads' center on the width direction. An experiment that involves 12 printed circuit boards (PCB) is designed and conducted to get comparative results. Four PCBs are employed for place-on-pad (PP), place-on-paste (PPS), and PB separately. On each board, 375 resistors R0402M (0.40 mm X 0.20 mm) are assembled horizontally. To study the components' misalignment under various solder paste offset conditions in different placement methods, a stencil with 25 solder paste offset settings is utilized. Based on this experiment's results, PB has superior performance to the other two methods to minimize components' misalignment. Regarding the number of acceptable components when post-reflow offsets are within 25% of components' dimensions, PB and PP have equivalent performances, and they both outperform PPS. Furthermore, PB is a low-cost placing strategy because PB needs not the real-time communication between the solder paste inspection machine and the pick-and-place machine. With the miniaturization trend in electronic products, the post-reflow components' misalignment is more frequently observed than before. The placement method proposed in this study is expected to offer a low-cost exploration in the component pick-and-place procedure to enhance the surface mount technology (SMT) assembly quality.


2002 ◽  
Vol 11 (01) ◽  
pp. 1-17 ◽  
Author(s):  
TADEUSZ SAWIK ◽  
ANDREAS SCHALLER ◽  
THOMAS M. TIRPAK

2018 ◽  
Vol 140 (4) ◽  
Author(s):  
Qiming Zhang ◽  
Jeffery C. C. Lo ◽  
S. W. Ricky Lee ◽  
Wei Xu

In recent years, due to the increased size of ball grid array (BGA) devices, the assembly of BGAs on printed circuit boards through surface mount technology has encountered unprecedented challenges from thermal warpage. The excessive warpage of BGAs in the reflow process may cause manufacture problems and even the risk of failure. Thus, it is essential to acquire warpage values and corresponding distribution ranges of BGAs before the surface mount technology process. In order to avoid assembly failure, theoretically, it is necessary to guarantee that all BGA devices meet the acceptance requirement of relevant standards. Generally, a large number of samples should be measured to obtain a relatively reliable warpage data distribution in the reflow temperature range, which makes this test quite costly and extremely time consuming. This study proposes another method to estimate the BGA warpage value and its possible corresponding range from the material property point of view. Because the mechanism of BGA warpage is related to the coefficient of thermal expansion (CTE) mismatch between the different materials, the warpage data scattering can be correlated with the scattering of material properties through finite element method (FEM) analysis. With a known mean value and range of material properties, the warpage value and corresponding distribution range can be solved. A sensitivity study is also presented in this paper. The accuracy of the proposed method is evaluated and the corresponding warpage data fluctuation range is estimated. From the comparison of the simulation and experiment results, determining the material properties could lead to a reasonable prediction of warpage in both the qualitative and quantitative sense. The proposed methodology for BGA warpage estimation can be used for academic research and industrial applications.


2001 ◽  
Vol 4 (6) ◽  
pp. 497-503 ◽  
Author(s):  
Yuichi ITOH ◽  
Kenji SUZUKI ◽  
Ryuichi HIRADE ◽  
Osamu MIKAMI ◽  
Teiji UCHIDA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document