scholarly journals Development of Glucose Meter Using Boric Acid-Modified Carbon Dots as Fluorescent Probe

2021 ◽  
Vol 13 (3) ◽  
pp. 49
Author(s):  
Akhiruddin Maddu ◽  
Sejahtera Ahmad ◽  
Tony Sumaryada

A glucose meter has been developed utilizing boric acid-modified carbon dots as a fluorescence probe. Boric acid-modified carbon dots produces varying fluorescence emission with varying glucose concentration in water. Boric acid-modified carbon dots mixed with glucose addition was excited by a violet laser (405 nm), then the emission intensity was detected by a photodetector to be converted to an electrical signal that as an input signal for a microcontroller for glucose concentration measurement. The output voltage of the glucose meter is corresponding to the fluorescence emission measured by using a spectrofluorometer with glucose concentration in the boric acid-modified carbon dots. Full Text: PDF ReferencesH. Teymourian, A. Barfidokht, J. Wang, "Electrochemical glucose sensors in diabetes management: an updated review (2010–2020)", Chem. Soc. Rev. 49, 7671 (2020). CrossRef D.C. Klonoff, "Overview of Fluorescence Glucose Sensing: A Technology with a Bright Future", J Diabetes Sci. Technol. 6(6), 1242 (2012). CrossRef J.C. Pickup, F. Hussain, N.D. Evans, O.J. Rolinski, David J.S. Birch, "Fluorescence-based glucose sensors", Biosens. Bioelectron. 20, 2555 (2005). CrossRef H. Fang, G. Kaur, B. Wang, "Progress in Boronic Acid-Based Fluorescent Glucose Sensors", J. Fluoresc. 14(5), 481 (2004). CrossRef T. Kawanishi, M.A. Romey, P.C. Zhu, M.Z. Holody, S. Shinkai, "A Study of Boronic Acid Based Fluorescent Glucose Sensors", J. Fluoresc. 14(5), 499 (2004). CrossRef A.S. Krishna, P.A. Nair, C. Radhakumary, K. Sreenivasan, "Carbon dot based non enzymatic approach for the detection and estimation of glucose in blood serum", Mater. Res. Express 3(1), 055001 (2016). CrossRef G.P.C. Mello, E.F.C. Simões, D.M.A. Crista, J.M.M. Leitão, L. Pinto da Silva, J.C.G. Esteves da Silva, "Glucose Sensing by Fluorescent Nanomaterials", Crit. Rev. Anal. Chem. 49(6), 542 (2019). CrossRef X. Shan, L. Chai, J. Ma, Z. Qian, J. Chen, H. Feng, "B-doped carbon quantum dots as a sensitive fluorescence probe for hydrogen peroxide and glucose detection", Analyst 139, 2322 (2014). CrossRef J. Dong, S. Li, H. Wang, Q. Meng, L. Fan, H. Xie, C. Cao, W. Zhang, "Simple Boric Acid-Based Fluorescent Focusing for Sensing of Glucose and Glycoprotein via Multipath Moving Supramolecular Boundary Electrophoresis Chip", Anal. Chem. 85(12), 5884 (2013). CrossRef Y. Cui, F. Chen, X-B. Yin, "A ratiometric fluorescence platform based on boric-acid-functional Eu-MOF for sensitive detection of H2O2 and glucose", Biosens. Bioelectron. 135, 208 (2019). CrossRef

2021 ◽  
Vol 21 (12) ◽  
pp. 6101-6110
Author(s):  
Dong Sun ◽  
Shu-Jun Li ◽  
Chun-Feng Wang ◽  
Tian-Tian Liu ◽  
Guang-Yue Bai ◽  
...  

Innovative nitrogen and boron co-doped carbon dots are hydrothermally produced using fructose, urea, and boric acid as precursors. The synthesized carbon dots possess a uniform morphology, and exhibit excellent fluorescence stability, tunable luminescence property, strong resistance to photobleaching, low-toxicity, and excellent biocompatibility. It is also found more dopant urea is conducive to the formation of the carbon dots with more B–N bonds, and shorter wavelength of fluorescence emission. Meanwhile, the synthesized carbon dots are well utilized as a photoluminescent probe for facile Hg2+ determination and fluorescent imaging reagent in cells.


2018 ◽  
Vol 12 (1) ◽  
pp. 64-72
Author(s):  
Takuro Tajima ◽  
◽  
Masahito Nakamura ◽  
Yujiro Tanaka ◽  
Michiko Seyama

More than two decades have passed since the initial clinical trial of noninvasive glucose sensing using optical absorption spectroscopy. Today, noninvasive sensing technologies are expected to meet the increasing demand for high-quality diabetes management. Here, we review the latest advances in noninvasive glucose sensing research, focusing on how photonics-, acoustic- and electronics-based sensing technologies have played key roles in the development of the first noninvasive glucose sensors. We also present our recent work on multiphysics-based glucose sensing using near-infrared photoacoustic spectroscopy and broadband dielectric spectroscopy and a comparison with other competitive technologies.


2021 ◽  
Vol 9 ◽  
Author(s):  
Gowhar A. Naikoo ◽  
Hiba Salim ◽  
Israr U. Hassan ◽  
Tasbiha Awan ◽  
Fareeha Arshad ◽  
...  

There is an undeniable growing number of diabetes cases worldwide that have received widespread global attention by many pharmaceutical and clinical industries to develop better functioning glucose sensing devices. This has called for an unprecedented demand to develop highly efficient, stable, selective, and sensitive non-enzymatic glucose sensors (NEGS). Interestingly, many novel materials have shown the promising potential of directly detecting glucose in the blood and fluids. This review exclusively encompasses the electrochemical detection of glucose and its mechanism based on various metal-based materials such as cobalt (Co), nickel (Ni), zinc (Zn), copper (Cu), iron (Fe), manganese (Mn), titanium (Ti), iridium (Ir), and rhodium (Rh). Multiple aspects of these metals and their oxides were explored vis-à-vis their performance in glucose detection. The direct glucose oxidation via metallic redox centres is explained by the chemisorption model and the incipient hydrous oxide/adatom mediator (IHOAM) model. The glucose electrooxidation reactions on the electrode surface were elucidated by equations. Furthermore, it was explored that an effective detection of glucose depends on the aspect ratio, surface morphology, active sites, structures, and catalytic activity of nanomaterials, which plays an indispensable role in designing efficient NEGS. The challenges and possible solutions for advancing NEGS have been summarized.


2019 ◽  
Author(s):  
Meifeng Wang ◽  
Gan Zhu ◽  
Yiqun Li ◽  
Liuqun Gu

Arylboronic acids were widely used as efficient catalysts in direct amide formation and other organic transformations. Surprisingly, reports on their use as catalysts in carbohydrates synthesis are very rare even though boron acid-diol complexation was extensively investigated in molecular recognition for saccharides and so on. Here we developed an efficient arylboronic acids catalyzed dimerization of glucosamines forming deoxyfructosazine which is important compound in pharmaceutical and food industries, against a commonly held belief that excess amount of phenyl boronic acid (or boric acid) is a must. A catalytic mechanism was also proposed and arylboronic acids instead of their boronates was identified as catalysts.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4672
Author(s):  
Mohamed H. Hassan ◽  
Cian Vyas ◽  
Bruce Grieve ◽  
Paulo Bartolo

The detection of glucose is crucial in the management of diabetes and other medical conditions but also crucial in a wide range of industries such as food and beverages. The development of glucose sensors in the past century has allowed diabetic patients to effectively manage their disease and has saved lives. First-generation glucose sensors have considerable limitations in sensitivity and selectivity which has spurred the development of more advanced approaches for both the medical and industrial sectors. The wide range of application areas has resulted in a range of materials and fabrication techniques to produce novel glucose sensors that have higher sensitivity and selectivity, lower cost, and are simpler to use. A major focus has been on the development of enzymatic electrochemical sensors, typically using glucose oxidase. However, non-enzymatic approaches using direct electrochemistry of glucose on noble metals are now a viable approach in glucose biosensor design. This review discusses the mechanisms of electrochemical glucose sensing with a focus on the different generations of enzymatic-based sensors, their recent advances, and provides an overview of the next generation of non-enzymatic sensors. Advancements in manufacturing techniques and materials are key in propelling the field of glucose sensing, however, significant limitations remain which are highlighted in this review and requires addressing to obtain a more stable, sensitive, selective, cost efficient, and real-time glucose sensor.


RSC Advances ◽  
2017 ◽  
Vol 7 (80) ◽  
pp. 50802-50811 ◽  
Author(s):  
Ya Peng ◽  
Xinyan Zhou ◽  
Nannan Zheng ◽  
Lingyu Wang ◽  
Xingping Zhou

A novel way has been established to make the FCDs with a very high QY, high stability, low cell cytotoxicity, and outstanding performance as a fluorescence probe.


2015 ◽  
Vol 71 ◽  
pp. 470-475 ◽  
Author(s):  
Ali Barati ◽  
Mojtaba Shamsipur ◽  
Hamid Abdollahi

Author(s):  
Bogdan Solnica ◽  
Jan Skupien ◽  
Beata Kusnierz-Cabala ◽  
Krystyna Slowinska-Solnica ◽  
Przemyslaw Witek ◽  
...  

AbstractThe aim of the study was to evaluate the effect of hematocrit (HCT) on glucose meter assays based on different measurement techniques.This paper studied glucose meters utilizing the glucose dehydrogenase reaction and four measurement techniques: colorimetry (HemoCue), reflectometry (Accu-Chek Active), amperometry (Optium Xido) and coulometry (Optium Omega). The EDTA venous blood samples HCT were modified by adding or removing defined aliquots of plasma. Glucose concentration was measured using each meter in 27 batches of blood samples, with HCT ranging from 20% to 60% in 10% increments. The data were analyzed using repeated measures models and a linear random effects model.A significant relationship between HCT and glucose reading in all meters was found and, for all meters except Optium Xido, there was a significant modification of this relationship by glucose level. The relative decrease in glucose concentration per 1% increase of the HCT value varied from 0.30% for Optium Omega in samples with glucose concentrations <5.55 mmol/L to 1.37% for Optium Xido in the same stratum (p<0.0001). The 5% glucose meter error (the ADA recommendation) was reached in the <5.55 mmol/L stratum after HCT change by 3.9%–16.7%.There is a significant continuous effect of HCT on measurement accuracy of glucose meters across its wide range of values and glucose concentrations. The most sensitive to the HCT interference was the system utilizing amperometric technique (Optium Xido) followed by the one with reflectometric technique (Accu-Chek Active), while the systems with the coulometric technique (Optium Omega) or colorimetric measurements in whole blood haemolysate (HemoCue) were less sensitive.


2009 ◽  
Vol 38 (4) ◽  
pp. 493-500
Author(s):  
S. Vijayakumar ◽  
Nancy E. Everds ◽  
P. Kalaiselvan ◽  
R.K. Shakthidevan ◽  
Yogesh Kumar V. Murkunde ◽  
...  

2019 ◽  
Vol 282 ◽  
pp. 515-522 ◽  
Author(s):  
Jagpreet Singh Sidhu ◽  
Ashutosh Singh ◽  
Neha Garg ◽  
Navneet Kaur ◽  
Narinder Singh

Sign in / Sign up

Export Citation Format

Share Document