scholarly journals Phenolic composition and antioxidant activities of cladodes of the two varieties of cactus pear (Opuntia ficus-indica) grown in Ethiopia

2017 ◽  
Vol 30 (3) ◽  
pp. 347 ◽  
Author(s):  
K. Haile ◽  
B. Mehari ◽  
M. Atlabachew ◽  
B. S. Chandravanshi
2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Tewelde Hailemicheal Reda ◽  
Mulubrhan Kahsay Atsbha

Cactus pear (Opuntia ficus-indica) seed is one of the main components of fruit crops. The seed is tightly packed together in a mucilaginous structure inside the endocarp of the fruit. The present study investigated the nutritional composition, antinutritional factors, and phytochemical and sensory attributes of cactus pear seeds collected from Hatset Kebele, Hawzen Woreda, Tigray region. The sample provides 392.84 kcal/100g energy in dry weigh basis. The dietary Ca, K, P, Fe, and Zn contents of the sample accounted 390.14mg, 446.46mg, 206.18mg, 4.37mg, and 2.01mg per 100 g, respectively. Despite the high phytate content (259.20mg/100g), the sample had appreciable amount of antioxidant capacity (43 to 95% of inhibition). The sample also had high value of water solubility index (5.6g/100g) and low value of bulk density (0.80g/ml). The sensory evaluation revealed that consumption of “Himbasha” (traditional bread) formulated with wheat flour was more preferable up to the ratio of 85:15% (wheat/seed).


2002 ◽  
pp. 125-129 ◽  
Author(s):  
G. Nieddu ◽  
I. Chessa ◽  
D. Satta ◽  
L. De Pau ◽  
M. Pala

Processes ◽  
2018 ◽  
Vol 6 (10) ◽  
pp. 189 ◽  
Author(s):  
Keren Toledo-Madrid ◽  
Tzayhrí Gallardo-Velázquez ◽  
Guillermo Osorio-Revilla

The aim of this study was to microencapsulate an optimized extract of purple cactus pear fruit (Opuntia ficus indica), rich in phenolic compounds (PC), betacyanins (BC), and betaxanthins (BX), with antioxidant capacity (AC), by two methodologies: combined water-in-oil-in water double emulsions-spray drying (W/O/W-SP) and conventional spray drying, studying the effect of spray drying (SP) on PC and AC. Optimal extraction conditions for bioactive compounds were: 52 °C, for 30 min, using aqueous ethanol (40%) as the solvent, with a 0.85 desirability function, obtaining 17.39 ± 0.11 mg GAE/gdw (gallic acid equivalents per gram of dry weight) for PC, 0.35 mg BE/gdw (betanin equivalents per gram of dry weight) for BC, and 0.26 mg IE/gdw (indicaxanthin equivalents per gram of dry weight) for BX. The best combination of temperatures for conventional SP and W/O/W-SP was 160–80 °C obtaining the highest retention and encapsulation efficiencies for PC. For conventional SP, results were: 107% and 100% PC and AC retention efficiencies (RE-PC and RE-AC), respectively, with 97% of PC encapsulation efficiency (EE-PC), meanwhile for the W/O/W-SP results were: 78% and 103% RE-PC and RE-AC, respectively, with 70% of EE-PC. Microcapsules obtained with W/O/W-SP maintained their structure and integrity and showed a considerable reduction in globule size in the reconstituted W/O/W emulsions due to the spray drying stress. Despite having lower EE-PC than conventional SP, spray dried W/O/W emulsions seems to be a promising controlled-delivery vehicle for antioxidant compounds.


Author(s):  
E. T. Silva ◽  
E. C. O. Silva ◽  
R. P. Gusmão ◽  
J. D. Lopes ◽  
T. A. S. Gusmão

<p>Objetivou-se nesse estudo avaliar a influência de pré-tratamentos osmóticos utilizando secagem convectiva complementar no processo de perda de água, ganho de sólidos e nos parâmetros de qualidade (cor, atividade de água e textura) de cladódios de palma forrageira. O Cladódio foi submetido à desidratação osmótica utilizando soluções mistas contendo 5% de NaCl e concentrações de sacarose de 50 e 60 °Brix, em diferentes proporções palma/solução (1:1, 1:4 e 1:10) a 40°C. Posteriormente foi realizada secagem convectiva a 50 e 60 °C. Foram utilizados, para ajuste aos dados experimentais da secagem, os modelos matemáticos de Page, Henderson &amp; Pabis, Cavancanti Mata, Exponencial de Dois Termos e Midilli. O cladódio de palma <em>in natura</em> e desidratado foi caracterizado quanto aos parâmetros de cor, atividade de água e textura. O aumento da perda de massa foi proporcional ao aumento da proporção cladódio/solução utilizada na desidratação osmótica e o ganho de sólidos foi maior para a concentração de 50 °Brix. O modelo matemático de Midilli foi o que melhor se ajustou aos dados experimentais. Os parâmetros de cor, atividade de água e textura foram modificados pelas condições de desidratação osmótica e de secagem as quais o cladódio de palma foi submetido. O cladódio desidratado a 50 °C apresentou melhor preservação da cor, maior resistência ao corte e menor atividade de água.<strong> </strong></p><p><strong> </strong></p><p align="center"><strong><em>Mathematical modeling of osmo-convective dehydration of the cactus pear (Opuntia ficus-indica Mill) using mixed solutions</em></strong><strong><em></em></strong></p><p><strong>Abstract</strong><strong>: </strong>The objective of this study was to evaluate the influence of osmotic pre-treatments with complementary convective drying in the water loss process and solids gain of cactus pear cladodes, to obtain palm for human consumption. The cladode was subjected to osmotic dehydration using mixed solutions containing 5% NaCl and sugar concentrations of 50 and 60 °Brix in different proportions palm/solution (1:1, 1:4 and 1:10) at 40 °C. Subsequently convective drying was performed at 50 and 60 °C. Were used to fit to the experimental data of drying, the mathematical models for Page, Henderson &amp; Pabis, Cavancanti Mata, Exponential of Two Terms and Midilli. The spineless cactus in natura and dehydrated was characterized as the parameters: color, water activity and texture. The study noted that the increased of weight mass was proportional to the increased of proportion cladode/solution used in osmotic dehydration and the solids gain was higher for concentration of 50 °Brix. The Midilli mathematical model was the best fit to the experimental data. The parameters of color, water activity and texture were modified by the conditions of osmotic dehydration and drying which spineless cactus cladodes was submitted. The cactus cladode dehydrated at 50 °C presented better preservation of the color, increased cut resistance and lowest water activity.</p>


2010 ◽  
Vol 82 (3) ◽  
pp. 722-727 ◽  
Author(s):  
Xian-Ke Zhong ◽  
Xin Jin ◽  
Feng-Ying Lai ◽  
Qing-Sheng Lin ◽  
Jian-Guo Jiang

2014 ◽  
Vol 157 ◽  
pp. 246-251 ◽  
Author(s):  
Cristina Vergara ◽  
Jorge Saavedra ◽  
Carmen Sáenz ◽  
Paula García ◽  
Paz Robert

2019 ◽  
Vol 44 (3) ◽  
pp. 239-247
Author(s):  
Mbarka Hfaiedh ◽  
Dalel Brahmi ◽  
Mohamed Nizar Zourgui ◽  
Lazhar Zourgui

Environmental and occupational exposure to chromium compounds, especially hexavalent chromium, is widely recognized as potentially nephrotoxic in humans and animals. The present study aimed to assess the efficacy of cactus (Opuntia ficus-indica) against sodium dichromate-induced nephrotoxicity, oxidative stress, and genotoxicity. Cactus cladodes extract (CCE) was phytochemically studied and tested in vitro for its potential antioxidant activities. Additionally, the preventive effect of CCE against sodium dichromate-induced renal dysfunction in a Wistar rat model (24 rats) was evaluated. For this purpose, CCE at a dose of 100 mg/kg was orally administered, followed by 10 mg/kg sodium dichromate (intraperitoneal injection). After 40 days of treatment, the rats were sacrificed, and the kidneys were excised for histological, lipid peroxidation, and antioxidant enzyme analyses. The phenol, flavonoid, tannin, ascorbic acid, and carotenoid contents of CCE were considered to be important. Our analyses showed that 1 mL of CCE was equivalent to 982.5 ± 1.79 μg of gallic acid, 294.37 ± 0.84 μg of rutin, 234.78 ± 0.24 μg of catechin, 204.34 ± 1.53 μg of ascorbic acid, and 3.14 ± 0.51 μg of β-carotene. In vivo, pretreatment with CCE was found to provide significant protection against sodium dichromate-induced nephrotoxicity by inhibiting lipid peroxidation, preserving normal antioxidant activities, and protecting renal tissues from lesions and DNA damage. The nephroprotective potential of CCE against sodium dichromate toxicity might be due to its antioxidant properties.


Sign in / Sign up

Export Citation Format

Share Document