scholarly journals Investigation of injection molding process parameters characteristics using RSM approach

2020 ◽  
Vol 12 (3) ◽  
pp. 16-25
Author(s):  
Ashish Goyal ◽  
Vimal Kumar Pathak ◽  
Siddharth Ogra ◽  
Anand Pandey

The present study analyzes the important characteristics of plastic injection molding machining process. The polypropylene (PP) material has used as a specimen and effect of melt temperature, packing pressure and injection pressure has been investigated on the tensile modulus and elongation. Total 20 experiments have been performed to analyses the results. Response surface methodology (RSM) was adopted for optimization of injection molding process parameters. The experiments were conducted by using central composite design. The analysis of variance (ANOVA) techniques was used for selection of significant and non-significant parameters. The experimental results show that the RSM influence elongation by 87.04%, 11.52%, 1.43% and tensile modulus by 85.35%, 11.4%, 3.25%. Keywords: Injection molding; polypropylene; tensile modulus; elongation

2013 ◽  
Vol 347-350 ◽  
pp. 1163-1167
Author(s):  
Ling Bai ◽  
Hai Ying Zhang ◽  
Wen Liu

Moldflow software was used to obtain the best gate location and count. Influence of injection molding processing parameters on sink marks of injection-piece was studied based on orthogonal test. The effects of different process parameters were analyzed and better process parameters were obtained. Results of research show that decreasing melt temperature, mold temperature, the increasing injection time and packing pressure can effectively reduce the sink marks index.


2018 ◽  
Vol 928 ◽  
pp. 133-138
Author(s):  
Karel Ráž ◽  
Martin Zahalka

The main aim of this paper was to describe the viscosity and injection mold filling behavior of PA6 with 15% of glass fibers. Injection molding is one of the most widely used processes for polymer products. The quality of these products is directly linked to correct choice of process parameters. It is necessary to understand the filling behavior of the polymer material during the injection molding process. The spiral flow test was carried out in this study to explore the effects of several injection process parameters. The resulting lengths of spiral flow were compared. The polymer material under test was Polyamide 6 with 15% of short glass fibers (trade name: Durethan BKV 15). Virtual testing as well as real testing was performed. A predominantly linear relationship between the flow length and the mold temperature, melt temperature and injection pressure is described here. A special mold was designed for this test.


2015 ◽  
Vol 1096 ◽  
pp. 366-370
Author(s):  
Yong Cheng Huang ◽  
Hong Bin Liu ◽  
Hai Tao Wu

Considering the importance of the reasonable injection molding technology.Based on the application of moldflow in injection molding of the helmet .By adjusting the mold temperature, melt temperature, injection time, packing pressure, hold time and so on the injection molding process parameters to develop appropriate technology methods to get the best injection molding parameters.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Youmin Wang ◽  
Zhichao Yan ◽  
Xuejun Shan

In order to obtain the optimal combination of process parameters for vertical-faced polypropylene bottle injection molding, with UG, the model of the bottle was drawn, and then, one module and sixteen-cavity injection molding system was established and analyzed using Moldflow. For filling and maintaining pressure during the process of infusion bottle injection molding, the orthogonal test table L25 (56) using CAE was designed for injection molding of the bottle, with six parameters such as melt temperature, mold temperature, injection pressure, injection time, dwell pressure, and dwell time as orthogonal test factors. By finding the best combination of process parameters, the orthogonal experiment was completed, the results were analyzed by range analysis, and the order of influence of each process parameter on each direction of optimization was obtained. The prediction dates of the infusion bottle were gained under various parameters, a comprehensive quality evaluation index of the bottle was formulated, and the multiobjective optimization problem of injection molding process was transformed into a single-objective optimization problem by the integrated weighted score method. The bottle parameters were optimized by analyzing the range date of the weighted scoring method, and the best parameter combination such as melt temperature 200°C, mold temperature 80°C, injection pressure 40 MPa, injection time 2.1 S, dwell pressure 40 MPa, and dwell time 40 S was gained.


2013 ◽  
Vol 345 ◽  
pp. 586-590 ◽  
Author(s):  
Xiao Hong Tan ◽  
Lei Gang Wang ◽  
Wen Shen Wang

To obtain optimal injection process parameters, GA was used to optimize BP network structure based on Moldflow simulation results. The BP network was set up which considering the relationship between volume shrinkage of plastic parts and injection parameters, such as mold temperature, melt temperature, holding pressure and holding time etc. And the optimal process parameters are obtained, which is agreed with actual results. Using BP network to predict injection parameters impact on parts quality can effectively reduce the difficulty and workload of other modeling methods. This method can be extended to other quality prediction in the process of plastic parts.Keyword: Genetic algorithm (GA);Neural network algorithm (BP);Injection molding process optimization;The axial deformation


2018 ◽  
Vol 25 (3) ◽  
pp. 593-601 ◽  
Author(s):  
Jixiang Zhang ◽  
Xiaoyi Yin ◽  
Fengzhi Liu ◽  
Pan Yang

Abstract Aiming at the problem that a thin-walled plastic part easily produces warpage, an orthogonal experimental method was used for multiparameter coupling analysis, with mold structure parameters and injection molding process parameters considered synthetically. The plastic part deformation under different experiment schemes was comparatively studied, and the key factors affecting the plastic part warpage were analyzed. Then the injection molding process was optimized. The results showed that the important order of the influence factors for the plastic part warpage was packing pressure, packing time, cooling plan, mold temperature, and melt temperature. Among them, packing pressure was the most significant factor. The optimal injection molding process schemes reducing the plastic part warpage were melt temperature (260°C), mold temperature (60°C), packing pressure (150 MPa), packing time (2 s), and cooling plan 3. In this situation, the forming plate flatness was better.


2011 ◽  
Vol 284-286 ◽  
pp. 550-556 ◽  
Author(s):  
Ming Hsiung Ho ◽  
Pin Ning Wang ◽  
Chin Ping Fung

This study investigates the effect of various injection molding process parameters and fiber amount on buckling properties of Polybutylene Terephthalate (PBT)/short glass fiber composite. The buckling specimens were prepared under injection molding process. These forming parameters about filling time, melt temperature and mold temperature that govern injection molding process are discussed. The buckling properties of neat PBT, 15 wt%, and 30 wt% are obtained using two ends fixed fixture and computerized closed-loop server-hydraulic material testing system. The fracture surfaces are observed by scanning electron microscopy (SEM). The global buckling forces are raised when increased the fiber weight percentage of PBT. Also, the fracture mechanisms in PBT and short glass fiber matrix are fiber pullout in skin area and fiber broken at core area. It is found that the addition of short glass fiber can significantly strengthen neat PBT.


Author(s):  
Rosidah Jaafar ◽  
◽  
Hambali Arep ◽  
Effendi Mohamad ◽  
Jeefferie Abd Razak ◽  
...  

The plastic injection molding process is one of the widely used of the manufacturing process to manufacture the plastic product with high productivity. Moreover, the food packaging manufacturing industry undergoes the trials and errors to obtain the optimal setting of the process parameters in order to minimize the quality issues and these trials and errors are time consuming and costly. The aim of this study is to improve the quality of the butter tub by minimizing the volumetric shrinkage. This study is to deal with the application of Moldflow integrating with the statistical technique to minimize the volumetric shrinkage the butter tub which depends on the process parameters of the plastic injection molding. For this purpose, the rectangular shape of butter tub is designed by utilizing the SolidWorks. Molflow is used to simulate the plastic filling of the single cavity mold of butter tub based on the Taguchi’s �!" orthogonal array table. In addition, the analysis of variance (ANOVA) is applied to investigate significant impact of the process parameters on the quality of the butter tub. Minitab is used to optimize the response of the volumetric shrinkage by selecting the most appropriate process parameters that maximizing the desirability value. Furthermore, the butter tub has a uniform thickness which was 1.2 mm and its factor of safety was 3.383 and the volumetric shrinkage response have optimized by 0.956 %. The melt temperature and mold temperature are found to be the most significant process parameters for the plastic injection molding process of butter tub and the volumetric shrinkage value obtained from the simulation is verified by the calculated volumetric shrinkage value.


2011 ◽  
Vol 189-193 ◽  
pp. 537-540
Author(s):  
Jia Min Zhang ◽  
Ming Yi Zhu ◽  
Zhao Xun Lian ◽  
Rong Zhu

The use of L27 (35) orthogonal to the battery shell injection molding process is optimized. The main factors of technical parameters were determined mould temperature, melt temperature, the speed of injection, injection pressure, cooling time.On the basis of actual production, to determine the factors values of different process parameters.Combination of scrapped products in key (reduction and a high degree of tolerance deflated) tests were selected in the process parameters within the scope of the assessment. Various factors impact on the product of the total height followed by cooling time, mold temperature, melt temperature, injection pressure, injection speed from strong to weak .The best products technological parameters were determined.Good results were obtained for production.


2014 ◽  
Vol 709 ◽  
pp. 374-379
Author(s):  
Yi Jun Huang

Injection molding is one of several molding technology of microcellular foamed plastics. This paper mainly discusses the injection molding mechanism and applications of microcellular foamed plastics here, and analyzes the influence of microcellular foamed plastics injection molding process parameters, including injection pressure, melt temperature, injection time, etc.; At the same time, this paper makes a more systematic discussions for the injection molding technology of microcellular foamed plastics, and the typical cases of microcellular foamed plastics in engineering application are introduced in detail.


Sign in / Sign up

Export Citation Format

Share Document