scholarly journals Cross-compatibility of cultivated cowpea varieties and their wild relatives: Implications for crop improvement

2021 ◽  
Vol 19 (1) ◽  
pp. 110-119
Author(s):  
D.J. Nwosu ◽  
C. Nwadike

Hybridization programmes that potentially exploit the variability existing in the wild germplasm of Vigna unguiculata L. Walpers could be of great potential for the future of plant breeding. Bearing this in mind, four cultivated cowpea varieties (Achi shuru, Ife Brown, Kanannado and Zebra bean) were crossed to two of their wild relatives: subsp. dekindtiana var. pubescens and subsp. unguiculata var. spontanea to ascertain the cross compatibility, reproductive potential and possible heterosis in the F1 generations. Results showed that the cultivated varieties hybridized relatively well with their wild relatives showing pod set range of 42.9% to 52.3% in crosses with subsp. dekindtiana var. pubescens and 40.0% to 52.0% in crosses with subsp. unguiculata var. spontanea. The F1 hybrid plants showed high heterosis in plant height, number of leaves per plant, number of flowers per plant, number of pods per plant and percentage pod set. They also produced viable seeds for F2 generations. These results are indications of a good reproductive potential of the hybrids thus making the wild relatives, good sources of important gene pool for the improvement of the cultivated populations.

2012 ◽  
Vol 5 (1) ◽  
pp. 195-200 ◽  
Author(s):  
D. J. Nwosu ◽  
E. N. Awa

Four cultivated cowpea (Achi shuru, Ife Brown, Kanannado and Zebra bean) were crossed to their wild relative subsp. dekindtiana var. pubescens to ascertain their cross compatibility, reproductive potential and possible heterosis in the F1 generations. Results show that the cultivated varieties hybridized relatively well with their wild relative with pod set of 40.8% to 46.7%. F1 hybrid plants also showed high heterosis in plant height and number of leaves and produced viable seeds. These results are indications of a good reproductive potential of the hybrids thus making the wild, good candidate for transfer of important gene pool into the cultivated populations.© 2013 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.doi: http://dx.doi.org/10.3329/jsr.v5i1.10761        J. Sci. Res. 5 (1), 195-200 (2013)


2020 ◽  
Vol 22 (1) ◽  
pp. 309
Author(s):  
Isaac Njaci ◽  
Abigail Ngugi-Dawit ◽  
Richard O. Oduor ◽  
Leah Kago ◽  
Brett Williams ◽  
...  

Insect pests pose a serious threat to global food production. Pod borer (Helicoverpa armigera (Hübner)) is one of the most destructive pests of leguminous crops. The use of host resistance has been an effective, environmentally friendly and sustainable approach for controlling several agricultural pests. The exploitation of natural variations in crop wild relatives could yield pest-resistant crop varieties. In this study, we used a high-throughput transcriptome profiling approach to investigate the defense mechanisms of susceptible cultivated and tolerant wild pigeonpea genotypes against H. armigera infestation. The wild genotype displayed elevated pest-induced gene expression, including the enhanced induction of phytohormone and calcium/calmodulin signaling, transcription factors, plant volatiles and secondary metabolite genes compared to the cultivated control. The biosynthetic and regulatory processes associated with flavonoids, terpenes and glucosinolate secondary metabolites showed higher accumulations in the wild genotype, suggesting the existence of distinct tolerance mechanisms. This study provides insights into the molecular mechanisms underlying insect resistance in the wild pigeonpea genotype. This information highlights the indispensable role of crop wild relatives as a source of crucial genetic resources that could be important in devising strategies for crop improvement with enhanced pest resistance.


Author(s):  
Ghazal Ghobadi ◽  
Alireza Etminan ◽  
Ali Mehras Mehrabi ◽  
Lia Shooshtari

Abstract Background Evaluation of genetic diversity and relationships among crop wild relatives is an important task in crop improvement. The main objective of the current study was to estimate molecular variability within the set of 91 samples from Triticum aestivum, Aegilops cylindrica, and Aegilops crassa species using 30 CAAT box–derived polymorphism (CBDP) and start codon targeted (SCoT) markers. Results Fifteen SCoT and Fifteen CBDP primers produced 262 and 298 fragments which all of them were polymorphic, respectively. The number of polymorphic bands (NPB), polymorphic information content (PIC), resolving power (Rp), and marker index (MI) for SCoT primers ranged from 14 to 23, 0.31 to 0.39, 2.55 to 7.49, and 7.56 to 14.46 with an average of 17.47, 0.34, 10.44, and 5.69, respectively, whereas these values for CBDP primers were 15 to 26, 0.28 to 0.36, 3.82 to 6.94, and 4.74 to 7.96 with a mean of 19.87, 0.31, 5.35, and 6.24, respectively. Based on both marker systems, analysis of molecular variance (AMOVA) indicated that the portion of genetic diversity within species was more than among them. In both analyses, the highest values of the number of observed (Na) and effective alleles (Ne), Nei’s gene diversity (He), and Shannon’s information index (I) were estimated for Ae. cylindrica species. Conclusion The results of cluster analysis and population structure showed that SCoT and CBDP markers grouped all samples based on their genomic constitutions. In conclusion, the used markers are very effective techniques for the evaluation of the genetic diversity in wild relatives of wheat.


2019 ◽  
Vol 17 (2) ◽  
pp. 103-114 ◽  
Author(s):  
Dickson Ng'uni ◽  
Graybill Munkombwe ◽  
Godfrey Mwila ◽  
Hannes Gaisberger ◽  
Joana Magos Brehm ◽  
...  

AbstractCrop wild relatives (CWR) are valuable gene pools for crop improvement and offer unique potential and opportunity for enhancing food security and adaptation to climate change. However, current actions towards conservation of plant genetic resources in Zambia do not adequately cover CWR occurring in the country. The article describes the process leading to the development of a national strategic action plan (NSAP) for the conservation and sustainable use of priority CWR in Zambia. Based on 59 prioritized crops, a partial checklist of 459 CWR taxa was generated from the national flora checklist of 6305 taxa. The generated CWR taxa were prioritized based on the socio-economic value of the related crop, their utilization potential in crop improvement, relative distribution and threat status to produce 30 prioritized CWR taxa. Occurrence data were compiled for all CWR inventory taxa and used in spatial analyses to establish species distribution, species richness, gaps in in situ conservation and genebank collections, and to identify priority sites for in situ conservation and ex situ collecting. Consistent with the national developmental agenda, along with the contribution of national stakeholders, spatial analyses of occurrence data of priority CWR taxa are valuable input for the development of the NSAP for the conservation and sustainable use of the priority CWR.


2019 ◽  
Vol 17 (2) ◽  
pp. 128-139 ◽  
Author(s):  
E. Allen ◽  
H. Gaisberger ◽  
J. Magos Brehm ◽  
N. Maxted ◽  
I. Thormann ◽  
...  

AbstractSuccessful conservation strategies require that taxa are prioritized because resources for planning and implementation are always limited. In this study, we created a partial checklist of crop wild relatives (CWR) that occur in the Southern African Development Community (SADC) region and identified the taxa of highest priority for regional conservation planning based on their importance for food and economic security. We found that the region contains over 1900 wild relatives of species cultivated for food, beverages, ornamental, forage/fodder, forestry, medicinal, environmental and other uses. Prioritization of these species was based on two criteria: (i) the value of the related crop for human food and economic security in the region and/or globally, and (ii) the potential or known value of the wild relatives of those crops for crop improvement. The region contains 745 CWR species related to 64 human food and beverage crops that are of high socioeconomic importance and 100 of these are of immediate priority for conservation action. The results of this study show that the SADC region contains a wealth of CWR diversity that is not only of value for food and economic security within the region but also globally. Furthermore, this study represents the first step in developing a CWR conservation and sustainable use strategy for the region, where its implementation would contribute to food security and well-being.


Weed Science ◽  
1998 ◽  
Vol 46 (6) ◽  
pp. 632-634 ◽  
Author(s):  
Steven S. Seefeldt ◽  
Robert Zemetra ◽  
Frank L. Young ◽  
Stephen S. Jones

Imazamox-resistant hybrids resulted from a cross between jointed goatgrass and an imazamox-resistant wheat (cv. FS-4 IR wheat). Two imazamox-resistant hybrids were discovered in a research plot where FS-4 IR wheat seed had been replanted from the harvest of an imazamox efficacy study conducted the year before at a different location. These hybrid plants survived imazamox applied at 0.053 and 0.069 kg ai ha−1in the field and produced seven viable seeds (BC1). This seed germinated, and chromosomes were counted from the roots (2N number ranged from 39 to 54). In the greenhouse, six of the seven plants survived an application of 0.072 kg ai ha−1imazamox, which confirmed that the resistance trait had been passed to these progeny. A large amount of phenotypic variation was observed in the mature BC1plants. A genetic description of the movement of the resistant gene is proposed based on the case of the gene being located on the D and the A or B genomes. Management strategies to reduce the occurrence of herbicide-resistant hybrids are presented.


2017 ◽  
Vol 6 (2) ◽  
pp. 73 ◽  
Author(s):  
Mukesh Choudhary ◽  
Vishal Singh ◽  
Vignesh Muthusamy ◽  
Shabir Hussain Wani

2006 ◽  
Vol 273 (1605) ◽  
pp. 3111-3115 ◽  
Author(s):  
Caroline S Ford ◽  
Joël Allainguillaume ◽  
Phil Grilli-Chantler ◽  
Giulia Cuccato ◽  
Charlotte J Allender ◽  
...  

Research on the environmental risks of gene flow from genetically modified (GM) crops to wild relatives has traditionally emphasized recipients yielding most hybrids. For GM rapeseed ( Brassica napus ), interest has centred on the ‘frequently hybridizing’ Brassica rapa over relatives such as Brassica oleracea , where spontaneous hybrids are unreported in the wild. In two sites, where rapeseed and wild B. oleracea grow together, we used flow cytometry and crop-specific microsatellite markers to identify one triploid F 1 hybrid, together with nine diploid and two near triploid introgressants. Given the newly discovered capacity for spontaneous introgression into B. oleracea , we then surveyed associated flora and fauna to evaluate the capacity of both recipients to harm cohabitant species with acknowledged conservational importance. Only B. oleracea occupies rich communities containing species afforded legislative protection; these include one rare micromoth species that feeds on B. oleracea and warrants further assessment. We conclude that increased attention should now focus on B. oleracea and similar species that yield few crop-hybrids, but possess scope to affect rare or endangered associates.


Sign in / Sign up

Export Citation Format

Share Document