scholarly journals Drug repurposing: cost effectiveness and impact on emerging and neglected diseases

2020 ◽  
Vol 16 (1) ◽  
pp. 3-17
Author(s):  
Matthew Obaineh Ojezele ◽  
Joseph Mordi ◽  
Emmanuel Adesola Adedapo

Historically, pressure on nature brought about by ever-increasing human pollution and technological advancement culminate in emergence and re- emergence of infectious and non-infectious diseases; necessitating medications and drug discovery and development. The emergence of resistantmicroorganisms and the emergence of new infections disease conditions necessitate the production of entirely new drugs or modification of the existing ones to increase their efficacy. The development of novel medications is a very long and expensive process. There is a significant decrease observed in the number of new drugs approved for clinical use in recent years showing inconsistency in the face of scientific advances and research and development investment. Regardless of high investment and enormous contributions, very few molecules showed promising results. However, finding novel indications for existing drugs can be a useful method of reducing the developmental cycle of drugs. Repositioning (also called repurposing) has been described as the practice of developing new therapeutic uses for drugs, abandoned or drugs in development process, other than the initially intended or approved uses, except for the circumstances in which the novel use is comparable to the original indication with dissimilar pharmacological targets. This review aimed at looking into some of the available methods in drug repurposing. Key words: Drug discovery; Drug repurposing; Machine learning; Neglected Tropical diseases; Orphan drugs

2020 ◽  
Vol 16 ◽  
pp. 1203-1224 ◽  
Author(s):  
Frederick A Partridge ◽  
Ruth Forman ◽  
Carole J R Bataille ◽  
Graham M Wynne ◽  
Marina Nick ◽  
...  

Helminths, including cestodes, nematodes and trematodes, are a huge global health burden, infecting hundreds of millions of people. In many cases, existing drugs such as benzimidazoles, diethylcarbamazine, ivermectin and praziquantel are insufficiently efficacious, contraindicated in some populations, or at risk of the development of resistance, thereby impeding progress towards World Health Organization goals to control or eliminate these neglected tropical diseases. However, there has been limited recent progress in developing new drugs for these diseases due to lack of commercial attractiveness, leading to the introduction of novel, more efficient models for drug innovation that attempt to reduce the cost of research and development. Open science aims to achieve this by encouraging collaboration and the sharing of data and resources between organisations. In this review we discuss how open science has been applied to anthelmintic drug discovery. Open resources, including genomic information from many parasites, are enabling the identification of targets for new antiparasitic agents. Phenotypic screening remains important, and there has been much progress in open-source systems for compound screening with parasites, including motility assays but also high content assays with more detailed investigation of helminth physiology. Distributed open science compound screening programs, such as the Medicines for Malaria Venture Pathogen Box, have been successful at facilitating screening in diverse assays against many different parasite pathogens and models. Of the compounds identified so far in these screens, tolfenpyrad, a repurposed insecticide, shows significant promise and there has been much progress in creating more potent and selective derivatives. This work exemplifies how open science approaches can catalyse drug discovery against neglected diseases.


2019 ◽  
Vol 26 (28) ◽  
pp. 5340-5362 ◽  
Author(s):  
Xin Chen ◽  
Giuseppe Gumina ◽  
Kristopher G. Virga

:As a long-term degenerative disorder of the central nervous system that mostly affects older people, Parkinson’s disease is a growing health threat to our ever-aging population. Despite remarkable advances in our understanding of this disease, all therapeutics currently available only act to improve symptoms but cannot stop the disease progression. Therefore, it is essential that more effective drug discovery methods and approaches are developed, validated, and used for the discovery of disease-modifying treatments for Parkinson’s disease. Drug repurposing, also known as drug repositioning, or the process of finding new uses for existing or abandoned pharmaceuticals, has been recognized as a cost-effective and timeefficient way to develop new drugs, being equally promising as de novo drug discovery in the field of neurodegeneration and, more specifically for Parkinson’s disease. The availability of several established libraries of clinical drugs and fast evolvement in disease biology, genomics and bioinformatics has stimulated the momentums of both in silico and activity-based drug repurposing. With the successful clinical introduction of several repurposed drugs for Parkinson’s disease, drug repurposing has now become a robust alternative approach to the discovery and development of novel drugs for this disease. In this review, recent advances in drug repurposing for Parkinson’s disease will be discussed.


2019 ◽  
Vol 4 (1) ◽  
pp. 53 ◽  
Author(s):  
Cathyryne Manner ◽  
Katy Graef ◽  
Jennifer Dent

Tropical diseases, including malaria and a group of infections termed neglected tropical diseases (NTDs), pose enormous threats to human health and wellbeing globally. In concert with efforts to broaden access to current treatments, it is also critical to expand research and development (R&D) of new drugs that address therapeutic gaps and concerns associated with existing medications, including emergence of resistance. Limited commercial incentives, particularly compared to products for diseases prevalent in high-income countries, have hindered many pharmaceutical companies from contributing their immense product development know-how and resources to tropical disease R&D. In this article we present WIPO Re:Search, an international initiative co-led by BIO Ventures for Global Health (BVGH) and the World Intellectual Property Organization (WIPO), as an innovative and impactful public-private partnership model that promotes cross-sector intellectual property sharing and R&D to accelerate tropical disease drug discovery and development. Importantly, WIPO Re:Search also drives progress toward the United Nations Sustainable Development Goals (SDGs). Through case studies, we illustrate how WIPO Re:Search empowers high-quality tropical disease drug discovery researchers from academic/non-profit organizations and small companies (including scientists in low- and middle-income countries) to leapfrog their R&D programs by accessing pharmaceutical industry resources that may not otherwise be available to them.


Parasitology ◽  
2020 ◽  
Vol 147 (6) ◽  
pp. 611-633 ◽  
Author(s):  
Claudio A. Pereira ◽  
Melisa Sayé ◽  
Chantal Reigada ◽  
Ariel M. Silber ◽  
Guillermo R. Labadie ◽  
...  

AbstractDuring three decades, only about 20 new drugs have been developed for malaria, tuberculosis and all neglected tropical diseases (NTDs). This critical situation was reached because NTDs represent only 10% of health research investments; however, they comprise about 90% of the global disease burden. Computational simulations applied in virtual screening (VS) strategies are very efficient tools to identify pharmacologically active compounds or new indications for drugs already administered for other diseases. One of the advantages of this approach is the low time-consuming and low-budget first stage, which filters for testing experimentally a group of candidate compounds with high chances of binding to the target and present trypanocidal activity. In this work, we review the most common VS strategies that have been used for the identification of new drugs with special emphasis on those applied to trypanosomiasis and leishmaniasis. Computational simulations based on the selected protein targets or their ligands are explained, including the method selection criteria, examples of successful VS campaigns applied to NTDs, a list of validated molecular targets for drug development and repositioned drugs for trypanosomatid-caused diseases. Thereby, here we present the state-of-the-art of VS and drug repurposing to conclude pointing out the future perspectives in the field.


2017 ◽  
Vol 1 ◽  
pp. maapoc.0000016 ◽  
Author(s):  
Paola Minghetti ◽  
Elena P. Lanati ◽  
Josie Godfrey ◽  
Oriol Solà-Morales ◽  
Olivier Wong ◽  
...  

Introduction Almost 8,000 rare diseases exist worldwide, affecting approximately 350 million people. Nevertheless, only 5% receive a specific authorized or licensed treatment. The need for effective and rapidly available therapies is still unmet for many patients. Objective The objective is to define repurposing versus off-label drugs, and to evaluate pathways of repurposed drugs for rare non-oncological diseases in Italy, France, England, and Spain (the EU4 countries). Methods This original paper is based on 3 research activities: (i) a nonsystematic literature research; (ii) a questionnaire-based survey to regulatory experts; and (iii) research on approval timelines and therapy prices of repurposed non-oncology orphan drugs. Official approval dates in England are not available if the National Institute for Health and Care Excellence does not appraise the products. Results Only France provides a specific adaptive pathway from off-label to repurposed drugs. Pricing and reimbursement assessment for the drug samples varied across the EU4 countries: time-to-market for repurposed drugs versus new drugs is longer in all analyzed countries; that is, 979 days versus 462 days in Italy, 502 days versus 350 days in France, and 624 versus 378 days in Spain. Repurposed drugs have higher success rates from development to approval than novel drugs (30% vs. 11%). Small- and medium-sized enterprises owned 9 of 12 repurposed non-oncology orphan drugs, of which only 4 were reimbursed in all EU4 countries. Prices were more homogeneous across EU4 although the reimbursement rates were different. Conclusions Drug repurposing represents a great opportunity to treat rare non-oncological diseases. However, a more homogenous assessment across EU4 could ensure reimbursement and prices high enough to reward organizations investing in this field.


2015 ◽  
Vol 12 (104) ◽  
pp. 20141289 ◽  
Author(s):  
Kevin Williams ◽  
Elizabeth Bilsland ◽  
Andrew Sparkes ◽  
Wayne Aubrey ◽  
Michael Young ◽  
...  

There is an urgent need to make drug discovery cheaper and faster. This will enable the development of treatments for diseases currently neglected for economic reasons, such as tropical and orphan diseases, and generally increase the supply of new drugs. Here, we report the Robot Scientist ‘Eve’ designed to make drug discovery more economical. A Robot Scientist is a laboratory automation system that uses artificial intelligence (AI) techniques to discover scientific knowledge through cycles of experimentation. Eve integrates and automates library-screening, hit-confirmation, and lead generation through cycles of quantitative structure activity relationship learning and testing. Using econometric modelling we demonstrate that the use of AI to select compounds economically outperforms standard drug screening. For further efficiency Eve uses a standardized form of assay to compute Boolean functions of compound properties. These assays can be quickly and cheaply engineered using synthetic biology, enabling more targets to be assayed for a given budget. Eve has repositioned several drugs against specific targets in parasites that cause tropical diseases. One validated discovery is that the anti-cancer compound TNP-470 is a potent inhibitor of dihydrofolate reductase from the malaria-causing parasite Plasmodium vivax .


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Justus Amuche Nweze ◽  
Florence N. Mbaoji ◽  
Yan-Ming Li ◽  
Li-Yan Yang ◽  
Shu-Shi Huang ◽  
...  

Abstract Background Malaria and neglected communicable protozoa parasitic diseases, such as leishmaniasis, and trypanosomiasis, are among the otherwise called diseases for neglected communities, which are habitual in underprivileged populations in developing tropical and subtropical regions of Africa, Asia, and the Americas. Some of the currently available therapeutic drugs have some limitations such as toxicity and questionable efficacy and long treatment period, which have encouraged resistance. These have prompted many researchers to focus on finding new drugs that are safe, effective, and affordable from marine environments. The aim of this review was to show the diversity, structural scaffolds, in-vitro or in-vivo efficacy, and recent progress made in the discovery/isolation of marine natural products (MNPs) with potent bioactivity against malaria, leishmaniasis, and trypanosomiasis. Main text We searched PubMed and Google scholar using Boolean Operators (AND, OR, and NOT) and the combination of related terms for articles on marine natural products (MNPs) discovery published only in English language from January 2016 to June 2020. Twenty nine articles reported the isolation, identification and antiparasitic activity of the isolated compounds from marine environment. A total of 125 compounds were reported to have been isolated, out of which 45 were newly isolated compounds. These compounds were all isolated from bacteria, a fungus, sponges, algae, a bryozoan, cnidarians and soft corals. In recent years, great progress is being made on anti-malarial drug discovery from marine organisms with the isolation of these potent compounds. Comparably, some of these promising antikinetoplastid MNPs have potency better or similar to conventional drugs and could be developed as both antileishmanial and antitrypanosomal drugs. However, very few of these MNPs have a pharmaceutical destiny due to lack of the following: sustainable production of the bioactive compounds, standard efficient screening methods, knowledge of the mechanism of action, partnerships between researchers and pharmaceutical industries. Conclusions It is crystal clear that marine organisms are a rich source of antiparasitic compounds, such as alkaloids, terpenoids, peptides, polyketides, terpene, coumarins, steroids, fatty acid derivatives, and lactones. The current and future technological innovation in natural products drug discovery will bolster the drug armamentarium for malaria and neglected tropical diseases.


Author(s):  
Saravanan Jayaram ◽  
Emdormi Rymbai ◽  
Deepa Sugumar ◽  
Divakar Selvaraj

The traditional methods of drug discovery and drug development are a tedious, complex, and costly process. Target identification, target validation; lead identification; and lead optimization are a lengthy and unreliable process that further complicates the discovery of new drugs. A study of more than 15 years reports that the success rate in the discovery of new drugs in the fields of ophthalmology, cardiovascular, infectious disease, and oncology to be 32.6%, 25.5%, 25.2% and 3.4%, respectively. A tedious and costly process coupled with a very low success rate makes the traditional drug discovery a less attractive option. Therefore, an alternative to traditional drug discovery is drug repurposing, a process in which already existing drugs are repurposed for conditions other than which were originally intended. Typical examples of repurposed drugs are thalidomide, sildenafil, memantine, mirtazapine, mifepristone, etc. In recent times, several databases have been developed to hasten drug repurposing based on the side effect profile, the similarity of chemical structure, and target site. This work reviews the pivotal role of drug repurposing in drug discovery and the databases currently available for drug repurposing.


Author(s):  
Rani Teksinh Bhagat ◽  
Santosh Ramarao Butle

The drug development is a very time consuming and complex process. Drug development Process is Expensive. Success rate for the new drug development is very small. In recent years, decreases the new drugs development. The powerful tools are developed to support the research and development (R&D) process is essential. The Drug repurposing are helpful for research and development process. The drug re-purposing as an approach finds new therapeutic uses for current candidates or existing candidates or approved drugs, different from its original application. The main aimed of Drug repurposing is to reduce costs and research time investments in Research & Development. It is used for the diagnosis and treatment of various diseases. Repositioning is important over traditional approaches and need for effective therapies. Drug re-purposing identifies new application for already banned or existing drugs from market. In drug design, drug repurposing plays important role, because it helps to preclinical development. It reducing time efforts, expenses and failures in drug discovery process. It is also called as drug repositioning, drug redirecting, drug reprofiling.


Author(s):  
Mithun Rudrapal ◽  
Shubham J. Khairnar ◽  
Anil G. Jadhav

Drug repurposing (DR) (also known as drug repositioning) is a process of identifying new therapeutic use(s) for old/existing/available drugs. It is an effective strategy in discovering or developing drug molecules with new pharmacological/therapeutic indications. In recent years, many pharmaceutical companies are developing new drugs with the discovery of novel biological targets by applying the drug repositioning strategy in drug discovery and development program. This strategy is highly efficient, time saving, low-cost and minimum risk of failure. It maximizes the therapeutic value of a drug and consequently increases the success rate. Thus, drug repositioning is an effective alternative approach to traditional drug discovery process. Finding new molecular entities (NME) by traditional or de novo approach of drug discovery is a lengthy, time consuming and expensive venture. Drug repositioning utilizes the combined efforts of activity-based or experimental and in silico-based or computational approaches to develop/identify the new uses of drug molecules on a rational basis. It is, therefore, believed to be an emerging strategy where existing medicines, having already been tested safe in humans, are redirected based on a valid target molecule to combat particularly, rare, difficult-to-treat diseases and neglected diseases.


Sign in / Sign up

Export Citation Format

Share Document