Biodiesel Production from Pongamia Pinnata and its Characterization using GC-MS, NMR and FT-IR Spectral Studies

Author(s):  
J. Fernandez ◽  
V. Hariram ◽  
S. Seralathan ◽  
S.A. Harikrishnan ◽  
T. Micha Premkumar

Biodiesel synthesis from the pongamia oil seed and its characterization is elaborated in this paper. A double stage transesterification i.e. acid catalysed transesterification and base catalysed esterification are adopted to reduce the free fatty acids content and conversion of triglycerides into methyl esters. In this process, H2SO4, NaOH and methanol are used at the methanol/oil molar ratio of 7:1. By this process, 95% of pongamia biodiesel is obtained. The physiochemical properties like calorific value, Cetane number, density, kinematic viscosity, flash point, fire point etc. are analysed and it is found to be within the ASTM standards. GC-MS analysis indicated the existence of 14 prominent fatty acids with oleic acid as the major constituent. 13C and 1H NMR results supported the GC-MS data and it also confirmed the conversion efficiency of converting the vegetable oil into PBD as 87.23%. The shifting and appearance of major peaks in the FT-IR spectrum confirmed the formation of FAMEs from the triglycerides.

2012 ◽  
Vol 622-623 ◽  
pp. 1204-1208
Author(s):  
Amar P. Pandhare ◽  
Atul S. Padalkar

The awareness on biodiesel in developing countries in the recent times has been increased. Several activities have been picked up for its production especially with a view to boost the rural economy. In the present investigation biodiesel was prepared from jatropha curcas seed oil (non edible oil). Before exploiting any plant for industrial application, it is imperative to have complete information about its biology, chemistry, and all other applications so that the potential of plant could be utilized maximally. Biodiesel was prepared by transesterification process of jatropha oil with methanol in heterogeneous system, using heterogeneous catalyst. The heterogeneous catalysts are environment friendly and render the process simplified. Calcination process was followed by the dependence of the conversion of jatropha oil on the reaction variables such as the catalyst loading; the molar ratio of the methanol to oil, reaction temperature agitation speed and the reaction time was studied. The conversion was over 89% at a reaction temperature of 70oC and molar ratio 12:1. Finally, Jatropha oil methyl esters was characterized to test its properties as fuels in diesel engines, such as viscosity, flash point, cetane number. Results showed that biodiesel obtained under the optimum conditions is an excellent substitute for fossil fuels.


2021 ◽  
Vol 37 (2) ◽  
pp. 134-143
Author(s):  
M.S Chomini ◽  
V.I Joshua ◽  
A.R John ◽  
M.P Ishaya

This study investigates the physico-chemical and fatty acids composition of crude seed oil extracts of Azadirachta indica . The main objective was to evaluate some biodiesel characteristics of the crude seed oil extract of Azadirachta indica. The procedures of the Association of Official and Analytical Chemist (AOAC) were used for assessment of some physical, biochemical, and fatty acids constituents of the test seed oil extract. The physical properties assayed for indicate that the oil is liquid at room temperature, non-drying, with specific gravity, with flash and melting points of 0.910±0.08 g/cm3, 80±2.10°C and 76±1.60°C respectively. The chemical properties included 66.77±2.55 g/100g (iodine value), 1.465±0.07 (refractive index@ 30°C), 212.96±1.16 mgKOH/g (saponification value), 0.39±0.16 meq/Kg (peroxide value), 4.24±0.12 mgKOH/g (acid value), 2.20±0.12 mm2/s (viscosity value), 56.91±2.19 (cetane number), 39.21±1.11 MJ/kg (calorific value) and 2.13±0.05% w/w (free fatty acids). Fatty acids composition of the crude seed oil of A. indica obtained were linoleic, hexadecanoic, octadecanoic and alpha linolenic acids, with retention time and % composition of 18.2 min and 10.8±0.50%, 22.2 min and 30.01±1.79%, 18.2 min and 59.10±2.22%, and 20.2 min and 0.09±0.02% respectively. The crude seed oil extract clearly presents a potential as a biodiesel substrate for incorporation as a proximate blend in auto-engines. This therefore would necessitate intensive afforestation efforts of the plant species for sustainable utilization. Keywords: Azadirachta indica, Biodiesel, physico-chemical, fatty acids, crude seed oil, extracts


2021 ◽  
Vol 2129 (1) ◽  
pp. 012063
Author(s):  
Zul Ilham ◽  
Shiro Saka

Abstract As an alternative route from the conventional alkali-catalyzed biodiesel production, the supercritical dimethyl carbonate method had been proven to successfully produce biodiesel with the co-production of glycerol carbonate in a one-step and two-step non-catalytic methods. Biodiesel or fatty acid methyl esters (FAME) obtained were high in yield, comparable with supercritical methanol method and satisfy the international standards for use as biodiesel in engines. In this paper, key parameters for the processes such as reaction temperature, pressure, time, molar ratio of dimethyl carbonate to oil, the FAME yield, thermal decomposition, degree of denaturation, tocopherol content, oxidation stability and fuel properties were discussed. The optimized condition for supercritical dimethyl carbonate method is at 300°C/20MPa/20min/42:1 molar ratio of dimethyl carbonate to oil with a satisfactory yield of FAME at 97.4wt%. The extensive approach in this study is very important to complement mathematical model for optimization in the literatures, and to ensure that only high-quality biodiesel could be produced by supercritical dimethyl carbonate method under an optimized condition.


2018 ◽  
Vol 6 (9) ◽  
pp. 487-496
Author(s):  
Janet John Nahadi ◽  
Musa Idris Atadashi

Biodiesel is defined as mono-alkyl esters of long chain fatty acids derived from vegetable oils or animal fats, which conform to ASTM D6751 specifications for use in diesel engines. Fuel-grade biodiesel must be produced to strict industry specifications in order to ensure proper performance. Biodiesel contains no petroleum, but it can be blended at any level with petroleum diesel to create a biodiesel blend. From the production and characterization of biodiesel via the alkaline transesterification of coconut oil using different concentrations homogeneous catalyst (sodium hydroxide), oil to methanol molar ratio of 1:6, reaction temperature of 550C and reaction time of 60 min. Biodiesel can serve as a potential feedstock for the production of biodiesel owing to its high conversion rate and relatively low FFA content. At a catalyst concentration of 1%w/w oil NaOH catalyst, optimum yield of up to 96% was achieved. It is interesting to note that the viscosity of the biodiesel obtained falls within the limit as specified by ASTM D445 (2003). A flash point of 154.2 was obtained for the coconut biodiesel. This shows that the biodiesel is safe for handling as the flash point exceeds the minimum stipulated by the ASTM (93min). The transformation of the triglycerides present in most oils into methyl ester was confirmed by FT-IR studied. Further investigation regarding the profile of the acid methyl esters present in the oil was confirmed using GC-MS analysis.


2019 ◽  
Author(s):  
Chem Int

Biodiesel produced by transesterification process from vegetable oils or animal fats is viewed as a promising renewable energy source. Now a day’s diminishing of petroleum reserves in the ground and increasing environmental pollution prevention and regulations have made searching for renewable oxygenated energy sources from biomasses. Biodiesel is non-toxic, renewable, biodegradable, environmentally benign, energy efficient and diesel substituent fuel used in diesel engine which contributes minimal amount of global warming gases such as CO, CO2, SO2, NOX, unburned hydrocarbons, and particulate matters. The chemical composition of the biodiesel was examined by help of GC-MS and five fatty acid methyl esters such as methyl palmitate, methyl stearate, methyl oleate, methyl linoleate and methyl linoleneate were identified. The variables that affect the amount of biodiesel such as methanol/oil molar ratio, mass weight of catalyst and temperature were studied. In addition to this the physicochemical properties of the biodiesel such as (density, kinematic viscosity, iodine value high heating value, flash point, acidic value, saponification value, carbon residue, peroxide value and ester content) were determined and its corresponding values were 87 Kg/m3, 5.63 Mm2/s, 39.56 g I/100g oil, 42.22 MJ/Kg, 132oC, 0.12 mgKOH/g, 209.72 mgKOH/g, 0.04%wt, 12.63 meq/kg, and 92.67 wt% respectively. The results of the present study showed that all physicochemical properties lie within the ASTM and EN biodiesel standards. Therefore, mango seed oil methyl ester could be used as an alternative to diesel engine.


2018 ◽  
Vol 9 (1) ◽  
pp. 133-139
Author(s):  
Waleed S. Mohammed ◽  
Ahmed H. El-Shazly ◽  
Marwa F. Elkady ◽  
Masahiro Ohshima

Introduction: The utilization of biodiesel as an alternative fuel is turning out to be progressively famous these days because of worldwide energy deficiency. The enthusiasm for utilizing Jatropha as a non-edible oil feedstock is quickly developing. The performance of the base catalyzed methanolysis reaction could be improved by a continuous process through a microreactor in view of the high mass transfer coefficient of this technique. Materials & Methods: Nanozirconium tungstovanadate, which was synthetized using sol-gel preparation method, was utilized in a complementary step for biodiesel production process. The prepared material has an average diameter of 0.066 &µm. Results: First, the NaOH catalyzed methanolysis of Jatropha oil was investigated in a continuous microreactor, and the efficient mixing over different mixers and its impact on the biodiesel yield were studied under varied conditions. Second, the effect of adding the nanocatalyst as a second stage was investigated. Conclusion: The maximum percentage of produced methyl esters from Jatropha oil was 98.1% using a methanol/Jatropha oil molar ratio of 11 within 94 s using 1% NaOH at 60 &°C. The same maximum conversion ratio was recorded with the nanocatalyst via only 0.3% NaOH.


2021 ◽  
Vol 36 (1) ◽  
pp. 53-66
Author(s):  
C. Esonye ◽  
O. D Onukwuli ◽  
S. O. Momoh

Currently the major challenge of biodiesel application as a replacement to petrodiesel is its industrial production sustainability.Consequently, the successful scale-up of laboratory results in transesterification requires so much information obtained through chemical kinetics.This paper presents the kinetics and thermodynamic study of alkali-homogeneous irreversible methanolysis of seed oil derived from African pear. The transesterification process was carried out from 0-100 minutes at temperature range of 55-65°C. The reaction mixture compositions were ascertained using gas chromatography- flame ionization detector (GC-FID) technique. Rate constants of the triglyceride (Tg), diglycerides (Dg) and monoglycerides(Mg) hydrolysis were in the range of 0.0140- 0.07810 wt%/min and increased with increase in temperature. The rate of reaction was found to increase with increase in temperature. Activation energies were found to be 6.14, 20.01 and 28.5kcal/mol at 55, 60 and 65oC respectively. Tg hydrolysis to Dg was observed asthe rate determining step while the reaction agreed with second order principles. A biodiesel yield of 93.02% was obtained with cloud point of 10°C , flash point of 125°C , pour point of 4°C , calorific value of 34.4MJ/kg, and cetane number of 54.90 which satisfy EN14214 and ASTM D 6751 standards. Results presented in this report would serve as idealized conditions for industrial scale up of biodiesel production from African pear seed oil. Keywords:Kinetics; methanolysis; rate constants; activation energy; African pear seed oil; biodiesel


2018 ◽  
Vol 67 ◽  
pp. 02010 ◽  
Author(s):  
Sari Dafinah Ramadhani ◽  
Saphira Nurina Fakhri ◽  
Setijo Bismo

The disadvantages of conventional biodiesel synthesis trigger the birth of new biodiesel synthesis methods using the DBD plasma reactor. The conventional methods with homogeneous and heterogeneous catalysts have significant constraints that the formation of glycerol compounds in large enough quantities that require considerable energy. The aim of present experiment is to design DBD non-thermal plasma reactor coaxial pipe type and to do its performance test in converting biodiesel The feed stock used are palm oil, ethanol, and argon gas as plasma carrier. Such a chemical reactor, this plasma reactor is also influenced by reaction kinetics and hydrodynamic factors. From this research, it can be seen that the optimum feed and gas flowrate being operated is 1.64 and 41.67 mL/s. The plasma reactor is used in the form of a quartz glass tube surrounded by a SS-314 spiral coil as an outer electrode. The applied operating conditions are 1 : 1 molar ratio of methanol/oil, ambient temperature of 28 - 30 °C, and pressure 1 bar. From this performance test, it is found that this plasma reactor can be used to synthesize biodiesel from palm oil and methanol without catalyst, no formation of soap, and minimal byproducts.


2018 ◽  
Vol 17 (4) ◽  
pp. 334-347
Author(s):  
Kwanchayanawish MACHANA ◽  
Amonrat KANOKRUNG ◽  
Sirinart SRICHAN ◽  
Boonyadist VONGSAK ◽  
Maliwan KUTAKO ◽  
...  

Determinations of fatty acid profiles of five microalgae; Amphora sp., Chaetoceros sp., Melosira sp., Bellerochae sp., and Lithodesmium sp., from the east coast of Thailand were evaluated by conventional Gas Chromatography-Flame Ionization Detector (GC-FID). The results exhibited that the fatty acids suitable for biodiesel production were the most frequent entities encountered in all microalgae profiles. The GC chromatogram of fatty acid profiles in microalgae showed that both Amphora sp. and Chaetoceros sp. comprised essential omega-3 fatty acids, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). Additionally, this study assessed whether Fourier Transform infrared (FT-IR) microspectroscopy could be used to evaluate and monitor the biochemical compositions of microalgae, including lipid, carbohydrate, and protein profiles, by using colorimetric methods. Results showed that FT-IR spectra combined with biochemical values of lipid, carbohydrate, and protein contents were used as predictive models generated by partial least square (PLS) regression. Cross-validation of the lipid, protein, and carbohydrate models showed high degrees of statistical accuracy with RMSECV values of approximately 0.5 - 3.22 %, and a coefficient of regression between the actual and predicted values of lipids, carbohydrates, and proteins were 92.66, 95.73, and 96.43 %, respectively. The RPD values were all high (> 3), indicating good predictive accuracy. This study suggested that FT-IR could be a tool for the simultaneous measurement of microalgae composition of biochemical contents in microalgae cells.


2014 ◽  
Vol 31 (2) ◽  
pp. 90 ◽  
Author(s):  
S Ismail ◽  
S. A Abu ◽  
R Rezaur ◽  
H Sinin

In this study, the optimum biodiesel conversion from crude castor oil to castor biodiesel (CB) through transesterification method was investigated. The base catalyzed transesterification under different reactant proportion such as the molar ratio of alcohol to oil and mass ratio of catalyst to oil was studied for optimum production of castor biodiesel. The optimum condition for base catalyzed transesterification of castor oil was determined to be 1:4.5 of oil to methanol ratio and 0.005:1 of potassium hydroxide to oil ratio. The fuel properties of the produced CB such as the calorific value, flash point and density were analyzed and compared to conventional diesel. Diesel engine performance and emission test on different CB blends proved that CB was suitable to be used as diesel blends. CB was also proved to have lower emission compared to conventional diesel.


Sign in / Sign up

Export Citation Format

Share Document