scholarly journals Properties of rice husk ash concrete with periwinkle shell as coarse aggregates

2018 ◽  
Vol 15 (2) ◽  
pp. 33
Author(s):  
A Aboshio ◽  
H.G. Shuaibu ◽  
M.T. Abdulwahab
2021 ◽  
Vol 2 (3) ◽  
Author(s):  
Shegufta Zahan ◽  
◽  
Muhammad A. Zahin ◽  
Muhammad M. Hossain ◽  
Raquib Ahsan ◽  
...  

Rice Husk Ash (RHA) is one of the agricultural waste byproducts available widely in the world and contains a large amount of silica. In Bangladesh, stones cannot be used as coarse aggregate in infrastructure works as they are not available and need to be imported from abroad. As a result, bricks are mostly used as coarse aggregates in concrete as they are cheaper and easily produced here. Clay is the raw material for producing brick. Due to rapid urban growth and the industrial revolution, demand for brick is increasing, which led to a decrease in the topsoil. This study aims to produce lightweight block aggregates with sufficient strength utilizing RHA at low cost and use them as an ingredient of concrete. RHA, because of its pozzolanic behavior, can be utilized to produce better quality block aggregates at lower cost, replacing clay content in the bricks. The whole study can be divided into three parts. In the first part, characterization tests on RHA and clay were performed to determine their properties. Six different types of RHA from different mills were characterized by XRD and SEM analysis. Their fineness was determined by conducting a fineness test. The result of XRD confirmed the amorphous state of RHA. The characterization test for clay identifies the sample as “silty clay” with a specific gravity of 2.59 and 14% optimum moisture content. In the second part, blocks were produced with six different types of RHA with different combinations by volume with clay. Then mixtures were manually compacted in molds before subjecting them to oven drying at 120 °C for 7 days. After that, dried blocks were placed in a furnace at 1200 °C to produce ultimate blocks. Loss on ignition test, apparent density test, crushing strength test, efflorescence test, and absorption test were conducted on the blocks to compare their performance with the bricks. For 40% of RHA, the crushing strength result was found 60 MPa, where crushing strength for brick was observed 48.1 MPa. In the third part, the crushed blocks were used as coarse aggregate in concrete cylinders and compared them with brick concrete cylinders. Specimens were cured for 7 days and 28 days. The highest compressive strength of block cylinders for 7 days curing was calculated as 26.1 MPa, whereas, for 28 days curing, it was found 34 MPa. On the other hand, for brick cylinders, the value of compressing strength of 7 days and 28 days curing was observed as 20 MPa and 30 MPa, respectively. These research findings can help with the increasing demand for topsoil of the earth, and also turn a waste product into a valuable one.


2019 ◽  
Vol 2 (1) ◽  
pp. 1
Author(s):  
Dedy Asmaroni ◽  
Taurina Jemmy Irwanto

The use of ACWC asphalt as a surface layer in Madura continues to increase as traffic growth increases following the opening of the Suramadu Bridge. In addition to having the advantages of stability in accepting loads compared to other types of surface layers, ACWC asphalt is also easily made and carried out in the field. However, asphalt mixing plant (AMP) companies in Madura still use materials from outside Madura as coarse aggregates such as river breaking stones and fly ash and cement used as fillers to improve stability. Based on this, this research was carried out by utilizing local meter which has the same properties in the form of local Madura crushed stone which will be used as coarse aggregate and industrial by-products in the form of rice husk ash (by-product of brick industry) and limestone powder (limestone mining byproducts ) used as filler. For this purpose samples were made with the percentage of filler used was 2%, 4%, 6%, 8% and 10%. Marshall test testing includes calculation of density, flow, VMA, VIM, VFB, and stability. From the test results, AC-WC uses local materials with both types of filler, namely Limestone and Rice Husk Ash. There is one type of mixture that meets the Marshall characteristics, namely the use of local materials and filler of limestone 8% asphalt variation 6.5%. With a value of 2,285 Density, 1,852,863 kg Stability, Flow 3,467 mm, Marshall Quotient 534,48 kg / mm, VIM 3,058%, V.M.A 15,941%, VFB 80,819%. While the local material and fillers of Rice Husk Ash from the results of Marshall Test for Flow, VIM, and VFB did not meet the requirements so that the use of rice husk ash filler could not be used as a substitute for cement.


2018 ◽  
Vol 4 (10) ◽  
pp. 2305 ◽  
Author(s):  
Naraindas Bheel ◽  
Shanker Lal Meghwar ◽  
Samiullah Sohu ◽  
Ali Raza Khoso ◽  
Ashok Kumar ◽  
...  

Concrete is highly utilized construction material around the globe and responsible for high depreciation of the raw materials. Consumption of this material in construction industry is arching upward day by day. On the other hand, debris of demolished concrete structures are being dumped as waste. For developing countries such waste is not a good sign and need its proper utilization by recycling it into useful product. In this consequence, this study is an attempt to utilize demolished waste concrete by converting into coarse aggregates. This research was conducted on recycled cement concrete aggregates of demolished structures and Rice Husk Ash (RHA). The purpose of this experimental study is to analyze the mechanical properties of concrete; when cement is partially replaced with RHA and natural aggregates by recycled aggregates (RA). In this study, the cement was replaced by RHA up to 10% by weight of cement. For experimental purpose, total 135 concrete specimens were prepared, cured and tested in Universal Testing Machine (UTM). Finally, laboratory results were compared in terms of compressive and splitting tensile strength made with normal and recycled coarse aggregates. All the specimens were prepared at 1:1.5:3 with 0.50 w/c ratio and tested at 7, 14, 21, 28 and 56 days curing ages. It is observed from experimental analysis that the workability of fresh normal concrete is 7% and 10% greater than recycled aggregates concrete blended with 10% RHA and only recycled aggregates concrete without RHA respectively. The compressive strength increases up to 6%, whilst splitting tensile strength increases 4% at 56 days curing, when the cement is replaced 10% by RHA. It is, further, concluded that with more than 10% RHA replacement with cement, the compressive strength decreases. This study would help the construction experts to use such wasted concrete into useable production of new concrete projects.


In many rice producing countries of the world, including in Vietnam, various research aimed at using rice husk ash (RHA) as a finely dispersed active mineral additive in cements, concrete and mortars are being conducted. The effect of the duration of the mechanoactivation of the RHA, produced under laboratory conditions in Vietnam, on its pozzolanic activity were investigated in this study. The composition of ash was investigated by laser granulometry and the values of indicators characterizing the dispersion of its particles before and after mechanical activation were established. The content of soluble amorphous silicon oxide in rice husk ash samples was determined by photocolorimetric analysis. The pizzolanic activity of the RHA, fly ash and the silica fume was also compared according to the method of absorption of the solution of the active mineral additive. It is established that the duration of the mechanical activation of rice husk ash by grinding in a vibratory mill is optimal for increasing its pozzolanic activity, since it simultaneously results in the production of the most dispersed ash particles with the highest specific surface area and maximum solubility of the amorphous silica contained in it. Longer grinding does not lead to further reduction in the size of ash particles, which can be explained by their aggregation, and also reduces the solubility of amorphous silica in an aqueous alkaline medium.


2014 ◽  
Vol 27 (2) ◽  
pp. 148-160
Author(s):  
Hassan K. Hassan ◽  
Najla J. Al-Amiri ◽  
Mohammed M. Yassen

2018 ◽  
Vol 60 (4) ◽  
pp. 3-7
Author(s):  
Thi To Yen Nguyen ◽  
Phung Anh Nguyen ◽  
Thi Thuy Van Nguyen ◽  
Tri Nguyen ◽  
Ky Phuong Ha Huynh ◽  
...  
Keyword(s):  
Red Mud ◽  

2015 ◽  
Vol 57 (4) ◽  
pp. 370-376 ◽  
Author(s):  
Ahmad Adlie Shamsuri ◽  
Ahmad Khuzairi Sudari ◽  
Edi Syams Zainudin ◽  
Mazlina Ghazali

Sign in / Sign up

Export Citation Format

Share Document