scholarly journals Utilization of rice husk ash with clay to produce lightweight coarse aggregates for concrete

2021 ◽  
Vol 2 (3) ◽  
Author(s):  
Shegufta Zahan ◽  
◽  
Muhammad A. Zahin ◽  
Muhammad M. Hossain ◽  
Raquib Ahsan ◽  
...  

Rice Husk Ash (RHA) is one of the agricultural waste byproducts available widely in the world and contains a large amount of silica. In Bangladesh, stones cannot be used as coarse aggregate in infrastructure works as they are not available and need to be imported from abroad. As a result, bricks are mostly used as coarse aggregates in concrete as they are cheaper and easily produced here. Clay is the raw material for producing brick. Due to rapid urban growth and the industrial revolution, demand for brick is increasing, which led to a decrease in the topsoil. This study aims to produce lightweight block aggregates with sufficient strength utilizing RHA at low cost and use them as an ingredient of concrete. RHA, because of its pozzolanic behavior, can be utilized to produce better quality block aggregates at lower cost, replacing clay content in the bricks. The whole study can be divided into three parts. In the first part, characterization tests on RHA and clay were performed to determine their properties. Six different types of RHA from different mills were characterized by XRD and SEM analysis. Their fineness was determined by conducting a fineness test. The result of XRD confirmed the amorphous state of RHA. The characterization test for clay identifies the sample as “silty clay” with a specific gravity of 2.59 and 14% optimum moisture content. In the second part, blocks were produced with six different types of RHA with different combinations by volume with clay. Then mixtures were manually compacted in molds before subjecting them to oven drying at 120 °C for 7 days. After that, dried blocks were placed in a furnace at 1200 °C to produce ultimate blocks. Loss on ignition test, apparent density test, crushing strength test, efflorescence test, and absorption test were conducted on the blocks to compare their performance with the bricks. For 40% of RHA, the crushing strength result was found 60 MPa, where crushing strength for brick was observed 48.1 MPa. In the third part, the crushed blocks were used as coarse aggregate in concrete cylinders and compared them with brick concrete cylinders. Specimens were cured for 7 days and 28 days. The highest compressive strength of block cylinders for 7 days curing was calculated as 26.1 MPa, whereas, for 28 days curing, it was found 34 MPa. On the other hand, for brick cylinders, the value of compressing strength of 7 days and 28 days curing was observed as 20 MPa and 30 MPa, respectively. These research findings can help with the increasing demand for topsoil of the earth, and also turn a waste product into a valuable one.

Rekayasa ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 112-117
Author(s):  
Dwi Nurtanto ◽  
Muhammad Fahad Kustantiyo ◽  
Nanin Meyfa Utami ◽  
Hernu Suyoso

Study ini membandingkan kuat hancur, berat volume antara beton ringan dengan beton dengan mengganti sebagian semen (PC) dengan limbah pertanian.  Limbah pertanian yang dimaksud adalah sekam padi dan ampas tebu. Penggunaan limbah pertanian tersebut sebaga material pengganti semen dikarenakan mempunyai sifat pozzolan yang cukup tinggi.  Pemakaian limbah pertanian ini dengan membakar ampas tebu dan sekam padi dengan suhu tertentu sehingga menjadi abu. Limbah tebu diambil dari Pabrik Gula Prajekan Bondowoso, dibakar dengan suhu 8000C  selama 8 jam. Limbah Padi diambil dari limbah Pabrik Padi di Kalisat Jember, dibakar dengan suhu 8500C selama 45 menit. Kandungan silika dari hasil pembakaran tersebut masing-masing sebesar 59,5% dan 79,5% . Prosentase pengganti sebagian PC sebesar 5%, 10%, 15% dan 20%, dengan perbandingan campuran abu ampas tebu (AAT) dan abu sekam padi (ASP) adalah 1:1. Pengujian dilakukan pada umur 28 hari dengan bentuk benda uji silender berukuran 10x20 cm. Hasil kuat hancur tertinggi pada benda uji dengan subsitusi PC sebesar 5% dan berat volume yang terendah pada benda uji dengan pengantian semen sebesar 20%. Effect of Cement Substitution with Agricultural Waste on Lightweight Structural ConcreteThis study compares the shattering strength, volume weight between lightweight concrete and concrete by replacing part of the Portland cement (PC) with agricultural waste. The agricultural waste in question is rice husk and sugarcane bagasse. The use of agricultural waste is as a substitute for cement because it has quite high pozzolanic properties. Use of this agricultural waste by burning sugarcane bagasse and rice husk with a certain temperature so that it becomes ash. Sugarcane waste is taken from Bondowoso Prajekan Sugar Mill, burned at 8000C for 8 hours. Rice waste is taken from the rice factory waste in Kalisat Jember, burned at 8500C for 45 minutes. The silica content of the combustion products was 59.5% and 79.5%, respectively. The percentage of partial PC replacement is 5%, 10%, 15%, and 20%, with a ratio of bagasse ash (BA) to rice husk ash (RHA) is 1: 1. The test was carried out at 28 days in the form of a 10 x 20 cm slender test object. The highest yield of crushing strength in specimens with PC substitution of 5% and the lowest volume weight in specimens with cement replacement of 20%.


2020 ◽  
Vol 977 ◽  
pp. 171-177
Author(s):  
Meekaruna Boonyaratchinda ◽  
Somyote Kongkarat

Rice husk is one of the major agricultural wastes in Thailand, which predominately consist of silica up to 90 wt%. Rubber tree bark (RTB) is an agricultural waste from the harvesting of natural rubber, composed of cellulose and rubber parts, which is a carbon-based material. This research aims to investigate the possibility of using rice husk and rubber tree bark as a silica and carbon resources for producing ferrosilicon alloy. Three different types of carbon were used for the investigation: Coal, RTB and Coal-RTB blend. Rice husk ash, iron ore and carbon were blended homogeneously according to their molar ratios. The prepared samples were heated at 1550 °C in argon atmosphere for 30 minutes and thus the metal droplets were produced. The silicon contents in the produced metal droplets were analyzed by using Inductive coupled plasma (ICP). The results show that the metal produced by this method are ferrosilicon alloy with the highest silicon contents in the metal droplets was 45.32 wt% for RTB, while it was 18.25 wt% for coal. This research unlocks the potential of utilization of agricultural waste in steelmaking industry.


2015 ◽  
Vol 242 ◽  
pp. 41-47 ◽  
Author(s):  
B.O. Ayomanor ◽  
Karen Vernon-Parry

Rice husk, an agricultural waste product obtained in large quantities in many countries including Nigeria, is very rich in siliceous materials. It has been known for several decades that, with careful processing, rice husk can be a source of metallurgical grade silicon [1]. The question remains as to whether rice husk ash (RHA) can be purified by a cost-effective, low technology route to produce solar-grade silicon suitable for use in photovoltaic devices. In Nigeria this would have the benefit of transforming large volumes (> 600,000 tonnes per annum) of agricultural waste into a partial solution to that country's issue with energy distribution.In this work, high purity silica has been prepared from RHA (ashed at 700°C for 5 and 12 hours) using a hydrometallurgical process. We report on the effect of natural variations in the rice husk composition on the effectiveness of the hydrometallurgical purification; the effectiveness of each stage of the hydrometallurgical process in removing impurity elements. While the hydrometallurgical purification of RHA is effective in removing impurities such as Ti and Fe to levels below the limits of detection of X-ray fluorescence (XRF), B and P levels need to be reduced to < 1017cm-3 well below the detection limits of XRF. The resultant silica has been subsequently reduced to metallurgical-grade silicon (MG-Si) by direct reduction using Mg powder.


Rice Husk Ash (RHA) is an agricultural waste product which is produced in large quantities globally every year and difficulty involved in its disposal, RHA becoming an environmental hazard in rice producing countries. India alone produces around 120 million tons of rice paddy per year, giving around 6 million tons of rice husk ash per year. RHA can be used in concrete to improve its strength and other durability factors. So we can use RHA as a partial replacement of cement in pervious concrete. In this research (OPC) cement has been replaced by RHA accordingly in the range of 10%,20%and30%byweightofcementforconstant 0.40 water cement ratio. The compressive strength test and water absorption test was carried out for 7, 28 days. So the main aim of the investigation to study the behaviour of PERVIOUS CONCRETE while replaces the RHA with different proportions in concrete. The test results were obtained from the research which are compared with the control mix (CM).


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3440
Author(s):  
Mohd Na’im Abdullah ◽  
Mazli Mustapha ◽  
Nabihah Sallih ◽  
Azlan Ahmad ◽  
Faizal Mustapha ◽  
...  

The utilisation of rice husk ash (RHA) as an aluminosilicate source in fire-resistant coating could reduce environmental pollution and can turn agricultural waste into industrial wealth. The overall objective of this research is to develop a rice-husk-ash-based geopolymer binder (GB) fire-retardant additive (FR) for alkyd paint. Response surface methodology (RSM) was used to design the experiments work, on the ratio of RHA-based GB to alkyd paint. The microstructure behaviour and material characterisation of the coating samples were studied through SEM analysis. The optimal RHA-based GB FR additive was formulated at 50% wt. FR and 82.628% wt. paint. This formulation showed the result of 270 s to reach 200 °C and 276 °C temperature at equilibrium for thermal properties. Furthermore, it was observed that the increased contents of RHA showed an increment in terms of the total and open porosities and rough surfaces, in which the number of pores on the coating surface plays an important role in the formation of the intumescent char layer. By developing the optimum RHA-based GB to paint formulation, the coating may potentially improve building fire safety through passive fire protection.


2018 ◽  
Vol 15 (2) ◽  
pp. 33
Author(s):  
A Aboshio ◽  
H.G. Shuaibu ◽  
M.T. Abdulwahab

2022 ◽  
Author(s):  
Sunita Kumari ◽  
Dhirendra Singhal ◽  
Rinku Walia ◽  
Ajay Rathee

Abstract The present project proposes to utilize rice husk and maize cob husk ash in the cement to mitigate the adverse impact of cement on environment and to enhance the disposal of waste in a sustainable manner. Ternary concrete / MR concrete was prepared by using rise husk and maize cob ash with cement. For the present project, five concrete mixes MR-0 (Control mix), MR-1 (Rice husk ash 10% and MR-2.5%), MR-2 (Rice husk ash 10% and MR-5%), MR-3 (Rice husk ash 10% and MR-2.5%), MR-4 (Rice husk ash 10% and MR-2.5%) were prepared. M35 concrete mix was designed as per IS 10262:2009 for low slump values 0-25mm. The purpose is to find the optimum replacement level of cement in M35 grade ternary concrete for I – Shaped paver blocks.In order to study the effects of these additions, micro-structural and structural properties test of concretes have been conducted. The crystalline properties of control mix and modified concrete are analyzed by Fourier Transform Infrared Spectroscope (FTIR), Scanning Electron Microscopy (SEM), and X-Ray Diffraction (XRD). The results indicated that 10% Rice husk ash and 5% maize cob ash replaced with cement produce a desirable quality of ternary concrete mix having good compressive strength. The results of SEM analysis indicated that the morphology of both concrete were different, showing porous structure at 7 days age and become unsymmetrical with the addition of ashes. After 28 day age, the control mix contained more quantity of ettringite and became denser than ternary concrete. XRD analysis revealed the presence of portlandite in large quantity in controlled mix concrete while MR concrete had the partially hydrated particle of alite.


2011 ◽  
Vol 367 ◽  
pp. 63-71 ◽  
Author(s):  
Adrian O. Eberemu ◽  
Agapitus A. Amadi ◽  
Joseph E. Edeh

Laboratory study on compacted tropical clay treated with up to 16% rice husk ash (RHA), an agro-industrial waste; to evaluate its hydraulic properties and hence its suitability in waste containment systems was carried out. Soil-RHA mixtures were compacted using standard Proctor, West African Standard and modified Proctor efforts at-2, 0, 2 and 4% of optimum moisture content (OMC). Compacted samples were permeated and the hydraulic behaviour of the material was examined considering the effects of moulding water content, water content relative to optimum, dry density and RHA contents. Results showed decreasing hydraulic conductivity with increasing moulding water content and compactive efforts; it also varied greatly between the dry and wet side of optimum decreasing towards the wet side. Hydraulic conductivity generally decreased with increased dry density for all effort. Hydraulic conductivity increased with rice husk ash treatment at the OMC; but were within recommended values of 1 x 10-7 cm/s for up to 8% rice husk ash treatment irrespective of the compactive effort used. This shows the suitability of the material as a hydraulic barrier in waste containment systems for up to 8% rice husk ash treatment and beneficial reuse of this agro-industrial waste product.


InterConf ◽  
2021 ◽  
pp. 418-426
Author(s):  
Thi Ngoc Quyen Nguyen

The biggest disadvantage of conventional concrete is brittle and hard, in addition, its durability is not high. The low durability of concrete is due to the presence of calcium hydroxide at the intersection of coarse aggregate particles and hard cement powder. The introduction of coconut fiber and polyvinyl alcohol (PVA) fibers into the concrete to improve the durability and flexibility of the concrete. In addition, the article also considers the effects of other additives such as rice husk ash, silica fume to study the performance of the structure as well as its durability when joining concrete mixes to create flexible concrete movable and more flexible than conventional concrete.


Sign in / Sign up

Export Citation Format

Share Document