scholarly journals Molecular detection of African swine fever virus in apparently healthy domestic pigs in Nasarawa state, Nigeria

2017 ◽  
Vol 14 (3) ◽  
pp. 26
Author(s):  
SA Ayas ◽  
CJ Bot ◽  
AR Jambol ◽  
PD Luka
2014 ◽  
Vol 13 (25) ◽  
pp. 2491-2499 ◽  
Author(s):  
Kalenzi Atuhaire David ◽  
Ochwo Sylvester ◽  
Afayoa Mathias ◽  
Mwesigwa Savannah ◽  
Norbert Mwiine Frank ◽  
...  

2013 ◽  
Vol 9 (1) ◽  
pp. 263 ◽  
Author(s):  
David Atuhaire ◽  
Mathias Afayoa ◽  
Sylvester Ochwo ◽  
Savannah Mwesigwa ◽  
Frank Mwiine ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Pam D. Luka ◽  
Joseph Erume ◽  
Bitrus Yakubu ◽  
Olajide A. Owolodun ◽  
David Shamaki ◽  
...  

Torque teno sus virus 1 (TTSuV1a/TTSuV1b) infection is present in pig herds worldwide. This study investigated the prevalence of TTSuV1a/TTSuV1b infections in domestic pigs from some slaughterhouses in Nigeria as well as coinfection with African swine fever virus (ASFV) and described the phylogeny in relation to global strains. One hundred and eighty-one (181) blood samples from four slaughterhouses were used for the study and viral nucleic acid detection was carried out by PCR. Comparative sequence analysis was carried out to infer phylogeny. The overall prevalence of TTSuV1a/b was 17.7%. Prevalence of individual genotypes was 10.5% and 7.2% for TTSuV1a and TTSuV1b, respectively. Coinfection of ASFV/TTSuV1a/b was 7.7% while that of TTSuV1a and TTSuV1b was 1.7%. ASFV alone was detected in 11.91% of the total samples. The Nigerian TTSuV1a and TTSuV1b shared a sequence identity of 91–100% and 95–100%, respectively, among each other. The ASFV sequences were 100% identical to members of genotype 1. This is the first report on the presence of TTSuV1a/b in domestic pigs in Nigeria and coinfection with ASFV. Although the prevalence of TTSuV1a/b in Nigeria was low, we recommend further studies to establish the trend and possible role in the pathogenesis of ASFV.


1989 ◽  
Vol 102 (3) ◽  
pp. 507-522 ◽  
Author(s):  
J. M. Haresnape ◽  
P. J. Wilkinson

SUMMARYA detailed study was made in 1983–5 in three villages in Mehinji district in the African swine fever (ASF) enzootic area of Malawi, following an outbreak of ASF which affected all three villages.Ticks of the Ornithodoros moubata complex were collected from both pig sties and houses shortly after the outbreak, and approximately 24% contained ASF virus. The proportion of ticks infected did not differ significantly in the three villages, or more surprisingly in different types of premises, and was equivalent in all stages of ticks. The proportion infected decreased with the passage of time, but infected ticks were still present in all three villages 8 months after the outbreak, some with high titres of virus.The proportion of seropositive pigs in the three villages approached 100% following the outbreak, with many apparently healthy pigs being seropositive. It is suggested that Malawian isolates of ASF virus may be less virulent in African than European breeds of domestic pig.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Stephen McCleary ◽  
Rebecca Strong ◽  
Ronan R. McCarthy ◽  
Jane C. Edwards ◽  
Emma L. Howes ◽  
...  

Viruses ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 820 ◽  
Author(s):  
Ayushi Rai ◽  
Sarah Pruitt ◽  
Elizabeth Ramirez-Medina ◽  
Elizabeth A. Vuono ◽  
Ediane Silva ◽  
...  

African swine fever virus (ASFV) is causing outbreaks both in domestic pigs and wild boar in Europe and Asia. In 2018, the largest pig producing country, China, reported its first outbreak of African swine fever (ASF). Since then, the disease has quickly spread to all provinces in China and to other countries in southeast Asia, and most recently to India. Outbreaks of the disease occur in Europe as far west as Poland, and one isolated outbreak has been reported in Belgium. The current outbreak strain is highly contagious and can cause a high degree of lethality in domestic pigs, leading to widespread and costly losses to the industry. Currently, detection of infectious ASFV in field clinical samples requires accessibility to primary swine macrophage cultures, which are infrequently available in most regional veterinary diagnostic laboratories. Here, we report the identification of a commercially available cell line, MA-104, as a suitable substrate for virus isolation of African swine fever virus.


2021 ◽  
Vol 8 ◽  
Author(s):  
Anthony F. Craig ◽  
Mathilde L. Schade-Weskott ◽  
Henry J. Harris ◽  
Livio Heath ◽  
Gideon J. P. Kriel ◽  
...  

Sylvatic circulation of African swine fever virus (ASFV) in warthogs and Ornithodoros ticks that live in warthog burrows historically occurred in northern South Africa. Outbreaks of the disease in domestic pigs originated in this region. A controlled area was declared in the north in 1935 and regulations were implemented to prevent transfer of potentially infected suids or products to the rest of the country. However, over the past six decades, warthogs have been widely translocated to the south where the extralimital animals have flourished to become an invasive species. Since 2016, there have been outbreaks of ASF in pigs outside the controlled area that cannot be linked to transfer of infected animals or products from the north. An investigation in 2008–2012 revealed that the presence of Ornithodoros ticks and ASFV in warthog burrows extended marginally across the boundary of the controlled area. We found serological evidence of ASFV circulation in extralimital warthogs further south in the central part of the country.


2020 ◽  
Vol 67 (6) ◽  
pp. 3016-3032 ◽  
Author(s):  
Jane Hühr ◽  
Alexander Schäfer ◽  
Theresa Schwaiger ◽  
Laura Zani ◽  
Julia Sehl ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document