scholarly journals Substitution of warthog NF-κB motifs into RELA of domestic pigs is not sufficient to confer resilience to African swine fever virus

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Stephen McCleary ◽  
Rebecca Strong ◽  
Ronan R. McCarthy ◽  
Jane C. Edwards ◽  
Emma L. Howes ◽  
...  
Viruses ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 820 ◽  
Author(s):  
Ayushi Rai ◽  
Sarah Pruitt ◽  
Elizabeth Ramirez-Medina ◽  
Elizabeth A. Vuono ◽  
Ediane Silva ◽  
...  

African swine fever virus (ASFV) is causing outbreaks both in domestic pigs and wild boar in Europe and Asia. In 2018, the largest pig producing country, China, reported its first outbreak of African swine fever (ASF). Since then, the disease has quickly spread to all provinces in China and to other countries in southeast Asia, and most recently to India. Outbreaks of the disease occur in Europe as far west as Poland, and one isolated outbreak has been reported in Belgium. The current outbreak strain is highly contagious and can cause a high degree of lethality in domestic pigs, leading to widespread and costly losses to the industry. Currently, detection of infectious ASFV in field clinical samples requires accessibility to primary swine macrophage cultures, which are infrequently available in most regional veterinary diagnostic laboratories. Here, we report the identification of a commercially available cell line, MA-104, as a suitable substrate for virus isolation of African swine fever virus.


2021 ◽  
Vol 8 ◽  
Author(s):  
Anthony F. Craig ◽  
Mathilde L. Schade-Weskott ◽  
Henry J. Harris ◽  
Livio Heath ◽  
Gideon J. P. Kriel ◽  
...  

Sylvatic circulation of African swine fever virus (ASFV) in warthogs and Ornithodoros ticks that live in warthog burrows historically occurred in northern South Africa. Outbreaks of the disease in domestic pigs originated in this region. A controlled area was declared in the north in 1935 and regulations were implemented to prevent transfer of potentially infected suids or products to the rest of the country. However, over the past six decades, warthogs have been widely translocated to the south where the extralimital animals have flourished to become an invasive species. Since 2016, there have been outbreaks of ASF in pigs outside the controlled area that cannot be linked to transfer of infected animals or products from the north. An investigation in 2008–2012 revealed that the presence of Ornithodoros ticks and ASFV in warthog burrows extended marginally across the boundary of the controlled area. We found serological evidence of ASFV circulation in extralimital warthogs further south in the central part of the country.


2020 ◽  
Vol 67 (6) ◽  
pp. 3016-3032 ◽  
Author(s):  
Jane Hühr ◽  
Alexander Schäfer ◽  
Theresa Schwaiger ◽  
Laura Zani ◽  
Julia Sehl ◽  
...  

Pathogens ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 662
Author(s):  
Julia Sehl ◽  
Jutta Pikalo ◽  
Alexander Schäfer ◽  
Kati Franzke ◽  
Katrin Pannhorst ◽  
...  

Endemically infected European wild boar are considered a major reservoir of African swine fever virus in Europe. While high lethality was observed in the majority of field cases, strains of moderate virulence occurred in the Baltic States. One of these, “Estonia 2014”, led to a higher number of clinically healthy, antibody-positive animals in the hunting bag of North-Eastern Estonia. Experimental characterization showed high virulence in wild boar but moderate virulence in domestic pigs. Putative pathogenic differences between wild boar and domestic pigs are unresolved and comparative pathological studies are limited. We here report on a kinetic experiment in both subspecies. Three animals each were euthanized at 4, 7, and 10 days post infection (dpi). Clinical data confirmed higher virulence in wild boar although macroscopy and viral genome load in blood and tissues were comparable in both subspecies. The percentage of viral antigen positive myeloid cells tested by flow cytometry did not differ significantly in most tissues. Only immunohistochemistry revealed consistently higher viral antigen loads in wild boar tissues in particular 7 dpi, whereas domestic pigs already eliminated the virus. The moderate virulence in domestic pigs could be explained by a more effective viral clearance.


2015 ◽  
Vol 144 (1) ◽  
pp. 25-34 ◽  
Author(s):  
C. GUINAT ◽  
S. GUBBINS ◽  
T. VERGNE ◽  
J. L. GONZALES ◽  
L. DIXON ◽  
...  

SUMMARYAfrican swine fever virus (ASFV) continues to cause outbreaks in domestic pigs and wild boar in Eastern European countries. To gain insights into its transmission dynamics, we estimated the pig-to-pig basic reproduction number (R0) for the Georgia 2007/1 ASFV strain using a stochastic susceptible-exposed-infectious-recovered (SEIR) model with parameters estimated from transmission experiments. Models showed thatR0is 2·8 [95% confidence interval (CI) 1·3–4·8] within a pen and 1·4 (95% CI 0·6–2·4) between pens. The results furthermore suggest that ASFV genome detection in oronasal samples is an effective diagnostic tool for early detection of infection. This study provides quantitative information on transmission parameters for ASFV in domestic pigs, which are required to more effectively assess the potential impact of strategies for the control of between-farm epidemic spread in European countries.


2001 ◽  
Vol 2 (2) ◽  
pp. 121-128 ◽  
Author(s):  
Steven B. Kleiboeker ◽  
Glen A. Scoles

AbstractAfrican swine fever virus (ASFV) is the only known DNA arbovirus and the sole member of the family Asfarviridae. It causes a lethal, hemorrhagic disease in domestic pigs. ASFV is enzootic in sub-Saharan Africa and is maintained in a sylvatic cycle by infecting both wild members of the Suidae (e.g. warthogs) and the argasid tickOrnithodoros porcinus porcinus. The pathogenesis of ASFV inO. porcinus porcinusticks is characterized by a low infectious dose, lifelong infection, efficient transmission to both pigs and ticks, and low mortality until after the first oviposition. ASFV pathogenesis in warthogs is characterized by an inapparent infection with transient, low viremic titers. ThusO. porcinus porcinusticks probably constitute the most important natural vector of ASFV, although both the mammalian and tick hosts are probably required for the maintenance of ASFV in the sylvatic cycle. The mechanism of ASFV transmission from the sylvatic cycle to domestic pigs is probably through infected ticks feeding on pigs. In addition toO. porcinus porcinus, a number of North American, Central American and Caribbean species ofOrnithodoroshave been shown to be potential vectors of ASFV.


Sign in / Sign up

Export Citation Format

Share Document