scholarly journals Synthesis, characterization and evaluation of biological activities of manganese-doped zinc oxide nanoparticles

2017 ◽  
Vol 16 (10) ◽  
pp. 2331-2339 ◽  
Author(s):  
Shakeel Ahmad Khan ◽  
Sammia Shahid ◽  
Waqas Bashir ◽  
Sadia Kanwal ◽  
Ahsan Iqbal

Purpose: To synthesize, characterize and investigate the antimicrobial properties of pure and manganese-doped zinc oxide nanoparticles.Method: Un-doped and manganese-doped zinc oxide (Mn-doped ZnO) nanoparticles were prepared using co-precipitation method. The synthesized Mn-doped ZnO  nanoparticles were characterized using energy-dispersive x-ray spectroscopy  (EDX), scanning electron microscopy (SEM), and x-ray diffraction (XRD)  spectroscopic techniques. Their band gap energies were measured with ultraviolet-visible (UVVis) spectroscopy, while their antioxidant properties were evaluated by ferric reducing antioxidant power (FRAP), DPPH radical-scavenging, ferric  thiocyanate (FTC) and total phenolic content (TPC) assays. The antimicrobial  activities of the nanoparticles against different bacterial strains were determined using agar diffusion method.Result: Results from XRD, SEM, EDX and UV-Vis analyses demonstrated  successful synthesis of undoped and Mn-doped ZnO nanoparticles as seen in their hexagonal, wurtzite structures. The un-doped and Mn-doped ZnO nanoparticles had average grain sizes of 16.72 nm and 17.5 nm, and band gap energies of 3.585 eV and 2.737 eV, respectively. Significant antibacterial activity was manifested by Mndoped ZnO against E. coli, S. aureus, Klebsiella and B. subtilis, with zones of inhibition (ZOIs) of 13 ± 0.09 mm, 14 ± 0.01 mm, 18 ± 0.07 mm and 20 ± 0.10 mm, respectively. The Mn-doped ZnO nanoparticles also exhibited effective and significant antioxidant potential relative to butylated hydroxytoluene (BHT) and un-doped ZnO nanoparticles.Conclusion: Mn-doped ZnO nanoparticles demonstrate significant antimicrobial and antioxidant activities. Thus, the preparation is a good candidate for further development into therapeutic formulations.Keywords: Mn-doped ZnO, Nanoparticles, Properties, Antioxidant, Antibacterial

Open Physics ◽  
2012 ◽  
Vol 10 (2) ◽  
Author(s):  
Abdub Ali ◽  
Francis Dejene ◽  
Hendrik Swart

AbstractUn-doped and Mn-doped ZnO nanoparticles were successfully synthesized in an ethanolic solution by using a sol-gel method. Material properties of the samples dependence on preparation conditions and Mn concentrations were investigated while other parameters were controlled to ensure reproducibility. It was observed that the structural properties, particle size, band gap, photoluminescence intensity and wavelength of maximum intensity were influenced by the amount of Mn ions present in the precursor. The XRD spectra for ZnO nanoparticles show the entire peaks corresponding to the various planes of wurtzite ZnO, indicating a single phase. The diffraction peaks of doped samples are slightly shifted to lower angles with an increase in the Mn ion concentration, signifying the expansion of the lattice constants and increase in the band gap of ZnO. All the samples show the absorption in the visible region. The absorbance spectra show that the excitonic absorption peak shifts towards the lower wavelength side with the Mn-doped ZnO nanoparticles. The PL spectra of undoped ZnO consist of UV emission at 388 nm and broad visible emission at 560 nm with varying relative peak intensities. The doping of ZnO with Mn quenches significantly the green emission while UV luminescence is slightly affected.


2015 ◽  
Vol 1112 ◽  
pp. 194-200
Author(s):  
Nadia Febiana Djaja ◽  
Rosari Saleh

The present study compares the photocatalytic decolorization ability of bare Mn-doped ZnO and montmorillonite modified Mn-doped ZnO nanoparticles towards aqueous solution of organic dyes (methylene blue and malachite green) under UV light irradiation. Both photocatalysts were synthesized using co-precipitation method and characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, Fourier-transform infrared absorption, electron spin resonance, and diffuse reflectance spectroscopy. Comparison of degradation efficiency demonstrated that montmorillonite modified Mn-doped ZnO nanoparticles exhibited higher activity than bare Mn-doped ZnO nanoparticles.


Chemosensors ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 120
Author(s):  
Deepika Thakur ◽  
Anshu Sharma ◽  
Abhishek Awasthi ◽  
Dharmender Singh Rana ◽  
Dilbag Singh ◽  
...  

Herein, we report the photocatalytic and fluorescence sensing applications of manganese-doped zinc oxide nanostructures synthesized by a solution combustion technique, using zinc nitrate as an oxidizer and urea as a fuel. The synthesized Mn-doped ZnO nanostructures have been analyzed in terms of their surface morphology, phase composition, elemental analysis, and optical properties with the help of scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), and UV-Visible (UV-Vis) spectroscopy. A careful observation of the SEM micrograph reveals that the synthesized material was porous and grown in very high density. Due to a well-defined porous structure, the Mn-doped ZnO nanostructures can be used for the detection of ciprofloxacin, which was found to exhibit a significantly low limit of detection (LOD) value i.e., 10.05 µM. The synthesized Mn-doped ZnO nanostructures have been further analyzed for interfering studies, which reveals that the synthesized sensor material possesses very good selectivity toward ciprofloxacin, as it detects selectively even in the presence of other molecules. The synthesized Mn-doped ZnO nanostructures have been further analyzed for the photodegradation of methyl orange (MO) dye. The experimental results reveal that Mn-doped ZnO behaves as an efficient photocatalyst. The 85% degradation of MO has been achieved in 75 min using 0.15 g of Mn-doped ZnO nanostructures. The observed results clearly confirmed that the synthesized Mn-dopedZnO nanostructures are a potential scaffold for the fabrication of sensitive and robust chemical sensors as well as an efficient photocatalyst.


2020 ◽  
Vol 41 (1) ◽  
pp. 46-50
Author(s):  
Surendra K. Gautam ◽  
Bibek Sapkota ◽  
Arun Bhujel ◽  
Sitaram Bhattarai

Zinc oxide (ZnO) nanoparticles were synthesized by chemical precipitation method using 0.1M and 0.3M [Zn(NO3)2.6H2O] and Na2CO3 solutions. The particle size and band gap of ZnO nanoparticles were estimated and effect of concentration on it was investigated. The synthesized nanoparticles were characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM), Energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR) and UV-visible spectroscopy. The XRD result revealed that synthesized ZnO nanoparticles have pure hexagonal wurtzite structure and the particle size varies from 27.0 nm to 29.9 nm estimated by using Debye-Scherrer’s equation. The TEM image also projected the average particle size in the range of 20-30 nm and selected area electron diffraction (SAED) further verified the formation of hexagonal wurtzite structure. The FTIR result showed a broad absorption band related to Zn-O vibration band. The UV-visible absorption showed a red shift in the absorption edge with increasing concentration of Zn(NO3)2.6H2O solution. The sizes and band gaps of ZnO nanoparticles increased and decreased, respectively with increasing concentration of Zn(NO3)2.6H2O solution from 0.1M to 0.3M.


2010 ◽  
Vol 09 (05) ◽  
pp. 495-502 ◽  
Author(s):  
N. RAJKUMAR ◽  
K. RAMACHANDRAN

Undoped and Mn (1 and 3 at.%) doped ZnO nanoparticles were synthesized by a simple chemical co-precipitation method. Rietveld refinement of X-ray diffraction (XRD) data revealed that undoped and Mn doped ZnO nanoparticles crystallize in the monophasic wurtzite structure and monotonous expansion of the lattice constants with increasing Mn content, due to the effective Mn doping. TEM images of all the samples showed the monodispersive spherical particles with the size of ~7 nm. The quantum confinement of nanoparticles was tested from UV–Vis absorbance measurement and the particle sizes were calculated and compared with TEM and XRD. The chemical compositions were analyzed by energy dispersive spectroscopy (EDS). In order to investigate the origin of ferromagnetism, the electronic structures of the Zn , O , and Mn atoms were probed by X-ray photoelectron spectroscopy (XPS). XPS data revealed that most of the dopants (Mn) exists in +2 oxidation state for 3 at.% Mn doped ZnO sample. The magnetization curves of the Mn doped ZnO samples indicate the existence of room-temperature ferromagnetic (RTFM) behavior. Here the observed RTFM in Mn doped ZnO can be attributed to the substitutional incorporation of Mn at Zn sites rather than due to the formation of any secondary phases.


2016 ◽  
Vol 12 (12) ◽  
pp. 4593-4600
Author(s):  
A. Srithar ◽  
J.C. Kannan ◽  
T.S. Senthil

In the present investigation, MnxZn1-xO (x = 0.05, 0.075 and 0.1%) nanoparticles have been synthesized by simple precipitation method. Their structural, morphological and optical properties were examined by using X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Energy dispersive X-ray spectroscopy (EDX), High resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Differential scanning calorimetry (DSC) and UV-Visible spectroscopy. The Powder X-ray diffraction studies confirmed that the manganese doped ZnO have a single phase nature with hexagonal wurtzite structure and Mn successfully incorporated into the lattice position of Zn in ZnO lattice. The FESEM and HRTEM images are coincided with each other for aggregation of particles in nature. The elemental analysis of doped samples has been evaluated by EDX. The antibacterial activity of Mn doped ZnO nanoparticles has also been examined.


2018 ◽  
Vol 32 (17) ◽  
pp. 1850185 ◽  
Author(s):  
Yun-Hui Si ◽  
Yu Xia ◽  
Ya-Yun Li ◽  
Shao-Ke Shang ◽  
Xin-Bo Xiong ◽  
...  

A series of BiFeO3 and BiFe[Formula: see text]Mn[Formula: see text]O3 (x = 0, 0.02, 0.04, 0.06, 0.08, 0.10) were synthesized by a hydrothermal method. The samples were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy (EDS) and UV–Vis diffuse reflectance spectroscopy, and their photocatalytic activity was studied by photocatalytic degradation of methylene blue in aqueous solution under visible light irradiation. The band gap of BiFeO3 was significantly decreased from 2.26 eV to 1.90 eV with the doping of Mn. Furthermore, the 6% Mn-doped BiFeO3 photocatalyst exhibited the best activity with a degradation rate of 94% after irradiation for 100 min. The enhanced photocatalytic activity with Mn doping could be attributed to the enhanced optical absorption, increment of surface reactive sites and reduction of electron–hole recombination. Our results may be conducive to design more efficient photocatalysts responsive to visible light among narrow band gap semiconductors.


Sign in / Sign up

Export Citation Format

Share Document