Combined Water Activity and Solute Effects on Growth and Survival of Listeria monocytogenes Scott A

1992 ◽  
Vol 55 (6) ◽  
pp. 414-418 ◽  
Author(s):  
A. J. MILLER

Water activity and solute effects were determined on the growth and survival of Listeria monocytogenes Scott A in bacteriological media. Media were adjusted to water activity (aw) levels of 0.99-0.80 with NaCl, glycerol (GLY), or propylene glycol (PG). Minimum aw levels for growth occurred at 0.90, 0.92, and 0.97 for GLY, NaCl, and PG, respectively. Survival was related to the aw level, as well as the solute employed. Cells survived the longest in GLY and died earliest in PG; NaCl was intermediate. These results provide quantitative isothermal criteria for estimating the aw level necessary to prevent growth of L. monocytogenes in food.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Satoko Hiura ◽  
Shige Koseki ◽  
Kento Koyama

AbstractIn predictive microbiology, statistical models are employed to predict bacterial population behavior in food using environmental factors such as temperature, pH, and water activity. As the amount and complexity of data increase, handling all data with high-dimensional variables becomes a difficult task. We propose a data mining approach to predict bacterial behavior using a database of microbial responses to food environments. Listeria monocytogenes, which is one of pathogens, population growth and inactivation data under 1,007 environmental conditions, including five food categories (beef, culture medium, pork, seafood, and vegetables) and temperatures ranging from 0 to 25 °C, were obtained from the ComBase database (www.combase.cc). We used eXtreme gradient boosting tree, a machine learning algorithm, to predict bacterial population behavior from eight explanatory variables: ‘time’, ‘temperature’, ‘pH’, ‘water activity’, ‘initial cell counts’, ‘whether the viable count is initial cell number’, and two types of categories regarding food. The root mean square error of the observed and predicted values was approximately 1.0 log CFU regardless of food category, and this suggests the possibility of predicting viable bacterial counts in various foods. The data mining approach examined here will enable the prediction of bacterial population behavior in food by identifying hidden patterns within a large amount of data.


2016 ◽  
Vol 99 (7) ◽  
pp. 5192-5201 ◽  
Author(s):  
E. Wemmenhove ◽  
M.H.J. Wells-Bennik ◽  
A. Stara ◽  
A.C.M. van Hooijdonk ◽  
M.H. Zwietering

1989 ◽  
Vol 52 (8) ◽  
pp. 571-573 ◽  
Author(s):  
KENT M. SORRELLS ◽  
DAVIN C. ENIGL ◽  
JOHN R. HATFIELD

The effect of different acids, pH, incubation time, and incubation temperature on the growth and survival of four strains of Listeria monocytogenes in tryptic soy broth was compared. Hydrochloric acid (HCl), acetic acid (AA), lactic acid (LA), malic acid (MA), and citric acid (CA) were used to acidify tryptic soy broth to pH values 4.4, 4.6, 4.8, 5.0, and 5.2 pH. Incubation times were 1, 3, 7, 14, and 28 d at 10, 25, and 35°C. The inhibition of L. monocytogenes in the presence of high acidity appears to be a function of acid and incubation temperature. Based on equal pH values, the antimicrobial activity is AA > LA > CA ≥ MA > HCl at all incubation times and temperatures. When based on equal molar concentration, the activity appeared to be CA ≥ MA > LA ≥ AA > HCl at 35 and 25°C, and MA > CA > AA ≥ LA > HCl at 10°C. Greatest antimicrobial activity occurred at 35°C. Greatest survival occurred at 10°C and greatest growth occurred at 25°C. Final pH of the medium was as low as 3.8 in HCl at 28 d. All strains grew well at pH values lower than the minimum previously reported (5.5–5.6).


1990 ◽  
Vol 53 (8) ◽  
pp. 652-655 ◽  
Author(s):  
DONALD E. CONNER ◽  
VIRGINIA N. SCOTT ◽  
DANE T. BERNARD

Growth and survival of four strains of Listeria monocytogenes under acidic conditions were investigated. Tryptic soy broth with yeast extract (TSBYE) was acidified with acetic, citric, hydrochloric, lactic, or propionic acid to pH 4.0–6.0, inoculated with L. monocytogenes and incubated at 30 or 4°C. The minimum test pH at which L. monocytogenes did not grow (inhibitory pH) was determined for each acid. In the pH range tested, this inhibitory pH was 5.0 for propionic acid, 4.5 for acetic and lactic acids, and 4.0 for citric and hydrochloric acids. All four strains gave similar results. Subsequent studies were conducted at 10 and 30°C to determine changes in cell populations in TSBYE adjusted to each inhibitory pH. Initial populations of viable cells (104 CFU/ml) were reduced to <10 CFU/ml within 1–3 weeks at 30°C, whereas at 10°C, L. monocytogenes survived for 11–12 weeks in acetic, citric, or propionic acid-adjusted media and for 6 weeks in media adjusted with hydrochloric or lactic acid. The concentration of undissociated lactic acid was 0.002 M at pH 4.5.


2015 ◽  
Vol 78 (4) ◽  
pp. 691-697 ◽  
Author(s):  
HAMZAH AL-QADIRI ◽  
SHYAM S. SABLANI ◽  
MAHMOUDREZA OVISSIPOUR ◽  
NIVIN AL-ALAMI ◽  
BYJU GOVINDAN ◽  
...  

This study investigated the growth and survival of three foodborne pathogens (Clostridium perfringens, Campylobacter jejuni, and Listeria monocytogenes) in beef (7% fat) and nutrient broth under different oxygen levels. Samples were tested under anoxic (<0.5%), microoxic (6 to 8%), and oxic (20%) conditions during storage at 7°C for 14 days and at 22°C for 5 days. Two initial inoculum concentrations were used (1 and 2 log CFU per g of beef or per ml of broth). The results show that C. perfringens could grow in beef at 22°C, with an increase of approximately 5 log under anoxic conditions and a 1-log increase under microoxic conditions. However, C. perfringens could not survive in beef held at 7°C under microoxic and oxic storage conditions after 14 days. In an anoxic environment, C. perfringens survived in beef samples held at 7°C, with a 1-log reduction. A cell decline was observed at 2 log under these conditions, with no surviving cells at the 1-log level. However, the results show that C. jejuni under microoxic conditions survived with declining cell numbers. Significant increases in L. monocytogenes (5 to 7 log) were observed in beef held at 22°C for 5 days, with the lowest levels recovered under anoxic conditions. L. monocytogenes in refrigerated storage increased by a factor of 2 to 4 log. It showed the greatest growth under oxic conditions, with significant growth under anoxic conditions. These findings can be used to enhance food safety in vacuum-packed and modified atmosphere–packaged food products.


mBio ◽  
2015 ◽  
Vol 6 (5) ◽  
Author(s):  
Kathleen A. Glass ◽  
Max C. Golden ◽  
Brandon J. Wanless ◽  
Wendy Bedale ◽  
Charles Czuprynski

ABSTRACT A 2014 multistate listeriosis outbreak was linked to consumption of caramel-coated apples, an unexpected and previously unreported vehicle for Listeria monocytogenes. This outbreak was unanticipated because both the pH of apples (<4.0) and the water activity of the caramel coating (<0.80) are too low to support Listeria growth. In this study, Granny Smith apples were inoculated with approximately 4 log10 CFU of L. monocytogenes (a cocktail of serotype 4b strains associated with the outbreak) on each apple's skin, stem, and calyx. Half of the apples had sticks inserted into the core, while the remaining apples were left intact. Apples were dipped into hot caramel and stored at either 7°C or 25°C for up to 11 or 28 days, respectively. Data revealed that apples with inserted sticks supported significantly more L. monocytogenes growth than apples without sticks under both storage conditions. Within 3 days at 25°C, L. monocytogenes populations increased >3 log10 in apples with sticks, whereas only a 1-log10 increase was observed even after 1 week for caramel-coated apples without sticks. When stored at 7°C, apples with sticks exhibited an approximately 1.5-log10 increase in L. monocytogenes levels at 28 days, whereas no growth was observed in apples without sticks. We infer that insertion of a stick into the apple accelerates the transfer of juice from the interior of the apple to its surface, creating a microenvironment at the apple-caramel interface where L. monocytogenes can rapidly grow to levels sufficient to cause disease when stored at room temperature. IMPORTANCE Neither caramel nor apples are a food where the pathogenic bacterium Listeria monocytogenes should grow, as caramel does not contain enough free water and apples are too acidic. Caramel-coated apples, however, were recently linked to a deadly outbreak of listeriosis. We hypothesized that inserting a stick into the apple releases juice to the interface between the apple and caramel, providing a more hospitable environment than either component alone. To test this hypothesis, apples were inoculated with L. monocytogenes prior to caramel dipping. Some apples had sticks inserted into them before dipping, while others did not. No growth of L. monocytogenes occurred on refrigerated caramel apples without sticks, whereas slow growth was observed on refrigerated caramel apples with sticks. In contrast, significant pathogen growth was observed within 3 days at room temperature on caramel apples with sticks inserted. Food producers should consider interfaces between components within foods as potential niches for pathogen growth.


Sign in / Sign up

Export Citation Format

Share Document