Survival of Enterohemorrhagic Escherichia coli O157:H7 in Bovine Feces Applied to Lettuce and the Effectiveness of Chlorinated Water as a Disinfectant

1999 ◽  
Vol 62 (8) ◽  
pp. 845-849 ◽  
Author(s):  
LARRY R. BEUCHAT

Bovine feces are a potential vehicle for transmitting enterohemorrhagic Escherichia coli O157:H7 to humans. A study was undertaken to determine survival characteristics of E. coli O157:H7 on iceberg lettuce using 0.1% peptone water and bovine feces as carriers for inocula. Four levels of inoculum, ranging from 100 to 105 CFU of E. coli O157:H7 per g of lettuce, were applied. Populations surviving on lettuce stored at 4°C were monitored for up to 15 days. Regardless of the type of carrier, viable cells of E. coli O157:H7 were detected on lettuce after 15 days, even when the initial inoculum was 100 to 101 CFU/g. Spray treatments of lettuce with 200 ppm chlorine solution or deionized water were equally effective in killing or removing E. coli O157:H7 from lettuce. Holding lettuce for 5 min after spray treatment was not more effective in reducing populations than holding for 1 min before rinsing with water. Prevention of contamination of lettuce with bovine feces that may harbor E. coli O157:H7 as well as other infectious microorganisms is essential to minimizing the risk of illness. The development of sanitizers more efficacious than chlorine for the removal of pathogens from raw fruits and vegetable is needed.

2014 ◽  
Vol 77 (9) ◽  
pp. 1487-1494 ◽  
Author(s):  
ANNEMARIE L. BUCHHOLZ ◽  
GORDON R. DAVIDSON ◽  
BRADLEY P. MARKS ◽  
EWEN C. D. TODD ◽  
ELLIOT T. RYSER

Cross-contamination of fresh-cut leafy greens with residual Escherichia coli O157:H7–contaminated product during commercial processing was likely a contributing factor in several recent multistate outbreaks. Consequently, radicchio was used as a visual marker to track the spread of the contaminated product to iceberg lettuce in a pilot-scale processing line that included a commercial shredder, step conveyor, flume tank, shaker table, and centrifugal dryer. Uninoculated iceberg lettuce (45 kg) was processed, followed by 9.1 kg of radicchio (dip inoculated to contain a four-strain, green fluorescent protein–labeled nontoxigenic E. coli O157:H7 cocktail at 106 CFU/g) and 907 kg (2,000 lb) of uninoculated iceberg lettuce. After collecting the lettuce and radicchio in about 40 bags (~22.7 kg per bag) along with water and equipment surface samples, all visible shreds of radicchio were retrieved from the bags of shredded product, the equipment, and the floor. E. coli O157:H7 populations were quantified in the lettuce, water, and equipment samples by direct plating with or without prior membrane filtration on Trypticase soy agar containing 0.6% yeast extract and 100 ppm of ampicillin. Based on triplicate experiments, the weight of radicchio in the shredded lettuce averaged 614.9 g (93.6%), 6.9 g (1.3%), 5.0 g (0.8%), and 2.8 g (0.5%) for bags 1 to 10, 11 to 20, 21 to 30, and 31 to 40, respectively, with mean E. coli O157:H7 populations of 1.7, 1.2, 1.1, and 1.1 log CFU/g in radicchio-free lettuce. After processing, more radicchio remained on the conveyor (9.8 g; P < 0.05), compared with the shredder (8.3 g), flume tank (3.5 g), and shaker table (0.1 g), with similar E. coli O157:H7 populations (P > 0.05) recovered from all equipment surfaces after processing. These findings clearly demonstrate both the potential for the continuous spread of contaminated lettuce to multiple batches of product during processing and the need for improved equipment designs that minimize the buildup of residual product during processing.


1999 ◽  
Vol 62 (5) ◽  
pp. 444-450 ◽  
Author(s):  
R. L. BUCHANAN ◽  
S. G. EDELSON ◽  
R. L. MILLER ◽  
G. M. SAPERS

The extent and location of Escherichia coli O157:H7 contamination after intact apples were immersed in cold (2°C) 1% peptone water containing approximately 3 × 107 CFU/ml was assessed using four apple varieties, Golden Delicious, McIntosh, Red Delicious, and Braeburn. Room temperature and refrigerated apples were used to determine the effect of temperature differential on E. coli infiltration. The highest levels of E. coli were associated with the outer core region of the apple, followed by the skin. Apples were subsequently treated by immersing them for 1 min in 2,000 mg/liter sodium hypochlorite, followed by a 1-min tapwater rinse. This treatment reduced pathogen levels by 1- to 3-log cycles but did not eliminate the microorganism, particularly from the outer core region. While E. coli was not detected in the inner core of most apples, warm fruit immersed in cold peptone water occasionally internalized the pathogen. The frequency and extent of internalization of the pathogen was less when cold apples were immersed in cold peptone water. Subsequent dye uptake studies with Golden Delicious apples indicated that approximately 6% of warm apples immersed into a cold dye solution accumulated dye via open channels leading from the blossom end into the core region. However, dye uptake did not occur when the dye solution was warmer than the apple.


1997 ◽  
Vol 60 (8) ◽  
pp. 891-897 ◽  
Author(s):  
L. M. HUDSON ◽  
J. CHEN ◽  
A. R. HILL ◽  
M. W. GRIFFITHS

Outbreaks of enterohemorrhagic Escherichia coli O157:H7 have been commonly associated with products derived from ground beef, but recently the organism has been implicated as the causative agent in outbreaks involving yogurt and cheese. This finding has raised concern about the potential for its growth and survival in fermented dairy products. A bioluminescent strain of E. coli O157:H7 was used to determine postprocessing survival in yogurt with live cultures at pH 4.17, 4.39, and 4.47 stored at 4 and 10°C. In addition, survival of E. coli O157:H7 was monitored during the manufacture of Cottage, Colby, Romano, and Feta cheeses. Results indicated survival for 8 and 5 days at 4 and 10°C respectively in yogurt at pH 4.17, 17 and 15 days at 4 and 10°C respectively in yogurt at pH 4.39, and 17days at both 4 and 10°C in yogurt at pH 4.47. E. coli O157:H7 did not survive cooking procedures at 56°C in Cottage cheese. However, the pathogen survived for 27, 30, and 27 days in Colby, Romano, and Feta cheeses respectively. A high correlation of r2 > 0.89 was obtained between counts of bioluminescenct colonies and standard plate count for all yogurt and cheese varieties, indicating that bioluminescence was a sensitive and rapid indicator of cellular viability for E. coli O157:H7. Survival of the pathogen, as indicated by this method, is possible in highly acidic environments even at refrigeration temperatures. This poses a potential hazard should postprocessing contamination occur.


2001 ◽  
Vol 64 (6) ◽  
pp. 783-787 ◽  
Author(s):  
CAROLYN M. MAYERHAUSER

Escherichia coli O157:H7 survival in acid foods such as unpasteurized apple cider and fermented sausage is well documented. Researchers have determined that E. coli O157:H7 can survive in refrigerated acid foods for weeks. The potential of acid foods to serve as a vector of E. coli O157:H7 foodborne illness prompted this study to determine the fate of this organism in retail mustard containing acetic acid when stored at room and refrigerated temperatures. Various retail brands of dijon, yellow, and deli style mustard, pH ranging from 3.17 to 3.63, were inoculated individually with three test strains of E. coli O157:H7. Samples were inoculated with approximately 1.0 × 106 CFU/g, incubated at room (25 ± 2.5°C) and refrigerated (5 ± 3°C) temperatures, and assayed for surviving test strains at predetermined time intervals. An aliquot was appropriately diluted and plated using sorbitol MacConkey agar (SMAC). When the test strain was not recoverable by direct plating, the sample was assayed by enrichment in modified tryptic soy broth and recovered using SMAC. Growth of E. coli O157:H7 test strains was inhibited in all retail mustard styles. E. coli O157:H7 was not detected in dijon style mustard beyond 3 h at room and 2 days at refrigerated temperatures. Survival in yellow and deli style mustard was not detected beyond 1 h. Overall, test strain survival was greater at refrigerated than room temperature. Retail mustard demonstrated the ability to eliminate effectively any chance contamination by this organism within hours to days, suggesting that these products are not a likely factor in E. coli O157:H7 foodborne illness.


2009 ◽  
Vol 72 (10) ◽  
pp. 2065-2070 ◽  
Author(s):  
MASASHI KANKI ◽  
KAZUKO SETO ◽  
JUNKO SAKATA ◽  
TETSUYA HARADA ◽  
YUKO KUMEDA

Universal preenrichment broth (UPB) was compared with modified Escherichia coli broth with novobiocin (mEC+n) for enrichment of Shiga toxin–producing E. coli O157 and O26, and with buffered peptone water (BPW) for preenrichment of Salmonella enterica. Ten strains each of the three pathogens were inoculated into beef and radish sprouts following thermal, freezing, or no treatment. With regard to O157 and O26, UPB incubated at 42°C recovered significantly more cells from inoculated beef than UPB at 35°C and from radish sprout samples than UPB at 35°C and mEC+n. With regard to Salmonella, UPB incubated at 42°C was as effective as UPB at 35°C and BPW at recovering cells from beef and radish sprout samples. No significant difference was noted between the effectiveness of UPB at 42°C and UPB at 35°C or BPW in the recovery of Salmonella from 205 naturally contaminated poultry samples. By using UPB at 42°C, one O157:H7 strain was isolated from the mixed offal of 53 beef samples, 6 cattle offal samples, and 50 pork samples all contaminated naturally, with no pathogen inoculation. The present study found that UPB incubated at 42°C was as effective as, or better than, mEC+n for enrichment of O157 and O26 and comparable to BPW for preenrichment of Salmonella. These findings suggest that a great deal of labor, time, samples, and space may be saved if O157, O26, and Salmonella are enriched simultaneously with UPB at 42°C.


2002 ◽  
Vol 65 (2) ◽  
pp. 251-259 ◽  
Author(s):  
SCOTT L. BURNETT ◽  
LARRY R. BEUCHAT

Confocal scanning laser microscopy (CSLM) was used to differentiate viable and nonviable cells of Escherichia coli O157:H7 on and in raw apple tissues following treatment with water and 200 or 2,000 ppm active chlorine solution. Whole unwaxed Red Delicious cultivar apples at 25°C were inoculated by dipping in a suspension of E. coli O157:H7 (8.48 log10 CFU/ml) at 4°C, followed by treatment in water or chlorine solution at 21°C for 2 min. The dead cells on and in apples were distinguished from live cells by treating tissue samples with SYTOX green nucleic acid stain. Viable and dead cells were then labeled with an antibody conjugated with a fluorescent dye (Alexa Fluor 594). The percentage of viable cells on the apple surface, as well as at various depths in surface and internal structures, was determined. The mean percentages of viable cells located at the sites after treatment with water or chlorinated water were in the following order, which also reflects the order of protection against inactivation: floral tube wall (20.5%) > lenticels (15.0%) > damaged cuticle surrounding puncture wounds (13.0%) > intact cuticle (8.1%). The location of viable cells within tissues was dependent on the structure. Except for lenticels, the percentage of viable cells increased as depth into the CSLM stacks increased, indicating that cells attached to subsurface structures were better protected against inactivation with chlorine than were cells located on exposed surfaces. Further research is warranted to investigate the efficacy of other chemical sanitizers, as well as that of surfactants and solvents in combination with sanitizers, in removing or killing E. coli O157:H7 lodged in protective structures on the surface and within tissues of apples.


1996 ◽  
Vol 59 (4) ◽  
pp. 370-373 ◽  
Author(s):  
R. K. PODOLAK ◽  
J. F. ZAYAS ◽  
C. L. KASTNER ◽  
D. Y. C. FUNG

Lean beef surfaces were inoculated with Escherichia coli O157:H7 and Listeria monocytogenes and then sanitized with fumaric, acetic, or lactic acid alone and in combined solutions of those acids at 55°C for 5 s. The initial inoculum level was 8.62 log CFU/cm2 and 5.13 log CFU/cm2 for L. monocytogenes and E. coli O157:H7, respectively. Fumaric acid at a concentration of 1% was the most effective acid in reducing the populations of L. monocytogenes by up to 1 log unit and E. coli O157:H7 by up to 1.3 log units when compared with acetic or lactic acids. The rank order of acids tested against the growth of L. monocytogenes and E. coli O157:H7 was fumaric acid followed by lactic and acetic acids. Fumaric acid at concentrations of 1.0% and 1.5% was more effective than any of the combined solutions of acids.


2003 ◽  
Vol 71 (3) ◽  
pp. 1505-1512 ◽  
Author(s):  
Stuart W. Naylor ◽  
J. Christopher Low ◽  
Thomas E. Besser ◽  
Arvind Mahajan ◽  
George J. Gunn ◽  
...  

ABSTRACT Escherichia coli O157:H7 causes bloody diarrhea and potentially fatal systemic sequelae in humans. Cattle are most frequently identified as the primary source of infection, and E. coli O157:H7 generally colonizes the gastrointestinal tracts of cattle without causing disease. In this study, persistence and tropism were assessed for four different E. coli O157:H7 strains. Experimentally infected calves shed the organism for at least 14 days prior to necropsy. For the majority of these animals, as well as for a naturally colonized animal obtained from a commercial beef farm, the highest numbers of E. coli O157:H7 were found in the feces, with negative or significantly lower levels detected in lumen contents taken from the gastrointestinal tract. Detailed examination demonstrated that in these individuals the majority of tissue-associated bacteria were adherent to mucosal epithelium within a defined region extending up to 5 cm proximally from the recto-anal junction. The tissue targeted by E. coli O157:H7 was characterized by a high density of lymphoid follicles. Microcolonies of the bacterium were readily detected on the epithelium of this region by immunofluorescence microscopy. As a consequence of this specific distribution, E. coli O157:H7 was present predominately on the surface of the fecal stool. In contrast, other E. coli serotypes were present at consistent levels throughout the large intestine and were equally distributed in the stool. This is a novel tropism that may enhance dissemination both between animals and from animals to humans. The accessibility of this site may facilitate simple intervention strategies.


1998 ◽  
Vol 61 (6) ◽  
pp. 662-667 ◽  
Author(s):  
GUODONG WANG ◽  
MICHAEL P. DOYLE

Several recent Escherichia coli O157:H7 outbreaks associated with both drinking and recreational water raise concerns about waterborne illness caused by this pathogen. The survival characteristics of a mixture of five nalidixic acid-resistant E. coli O157:H7 strains (103 CFU/ml) in filtered and autoclaved municipal water, in reservoir water, and in water from two recreational lakes were determined for a period of 91 days at 8, 15, or 25°C. Greatest survival was in filtered autoclaved municipal water and least in lake water. Regardless of the water source, survival was greatest at 8°C and least at 25°C. E. coli O157:H7 populations decreased by 1 to 2 log10 by 91 days at 8°C, whereas the pathogen was not detectable (≥3 log10 decrease) within 49 to 84 days at 25°C in three of the four water sources. SDS-PAGE of surface antigens of surviving cells revealed that there was no major alteration in lipopolysaccharide pattern, but outer membrane protein composition did change. These studies indicate that E. coli O157:H7 is a hardy pathogen that can survive for long periods of time in water, especially at cold temperatures. However, direct viable counts of E. coli O157:H7 determined by acridine orange staining remained essentially the same for 12 weeks at 25°C, whereas viable counts on tryptic soy agar plates decreased to undetectable levels within 12 weeks. Results suggest that E. coli O157:H7 can enter a viable but nonculturable (VBNC) state in water.


Sign in / Sign up

Export Citation Format

Share Document