Simultaneous Enrichment of Shiga Toxin–Producing Escherichia coli O157 and O26 and Salmonella in Food Samples Using Universal Preenrichment Broth

2009 ◽  
Vol 72 (10) ◽  
pp. 2065-2070 ◽  
Author(s):  
MASASHI KANKI ◽  
KAZUKO SETO ◽  
JUNKO SAKATA ◽  
TETSUYA HARADA ◽  
YUKO KUMEDA

Universal preenrichment broth (UPB) was compared with modified Escherichia coli broth with novobiocin (mEC+n) for enrichment of Shiga toxin–producing E. coli O157 and O26, and with buffered peptone water (BPW) for preenrichment of Salmonella enterica. Ten strains each of the three pathogens were inoculated into beef and radish sprouts following thermal, freezing, or no treatment. With regard to O157 and O26, UPB incubated at 42°C recovered significantly more cells from inoculated beef than UPB at 35°C and from radish sprout samples than UPB at 35°C and mEC+n. With regard to Salmonella, UPB incubated at 42°C was as effective as UPB at 35°C and BPW at recovering cells from beef and radish sprout samples. No significant difference was noted between the effectiveness of UPB at 42°C and UPB at 35°C or BPW in the recovery of Salmonella from 205 naturally contaminated poultry samples. By using UPB at 42°C, one O157:H7 strain was isolated from the mixed offal of 53 beef samples, 6 cattle offal samples, and 50 pork samples all contaminated naturally, with no pathogen inoculation. The present study found that UPB incubated at 42°C was as effective as, or better than, mEC+n for enrichment of O157 and O26 and comparable to BPW for preenrichment of Salmonella. These findings suggest that a great deal of labor, time, samples, and space may be saved if O157, O26, and Salmonella are enriched simultaneously with UPB at 42°C.

2019 ◽  
Vol 12 (10) ◽  
pp. 1584-1590
Author(s):  
Maria Kristiani Epi Goma ◽  
Alvita Indraswari ◽  
Aris Haryanto ◽  
Dyah Ayu Widiasih

Background and Aim: The feasibility assessment of food products on the market becomes one of the milestones of food safety. The quality of food safety of animal origin especially pork need to get attention and more real action from the parties related and concerned. Since pork is also a source of transmission for the contagion of foodborne disease so that the study of the existence of several agents in the pork and its products become the benchmark of safety level. This study aimed to isolate, identify, and detect the Shiga toxin 2a (stx2a) gene from Escherichia coli O157:H7 in pork, pig feces, and clean water in the Jagalan slaughterhouse. Materials and Methods: A total of 70 samples consisting of 32 pork samples, 32 pig fecal samples, and 6 clean water samples were used to isolate and identify E. coli O157:H7 and the stx2a gene. Isolation and identification of E. coli O157:H7 were performed using culture on eosin methylene blue agar and Sorbitol-MacConkey agar media and confirmed molecularly with polymerase chain reaction to amplify the target genes rfbE (317 bp) and fliC (381 bp). The isolates, which were identified as E. coli O157:H7, were investigated for the stx2a gene (553 bp). Results: The results of this study show that of the total collected samples, E. coli O157:H7 was 28.6% in Jagalan slaughterhouse and consisted of 25% of pork samples, 31.25% of pig fecal samples, and 33.3% of clean water samples. The isolates that were identified to be E. coli O157:H7 mostly contained the stx2a gene, which was equal to 75%, and consisted of seven isolates from pork samples, seven isolates from fecal samples, and one isolate from clean water samples. Conclusion: E. coli O157:H7 was found in 28.6% of pork, pig feces, and clean water in Jagalan slaughterhouse and 75% of identified E. coli O157:H7 contained the stx2a gene.


2003 ◽  
Vol 69 (3) ◽  
pp. 1858-1860 ◽  
Author(s):  
Shin Sata ◽  
Tomohiko Fujisawa ◽  
Ro Osawa ◽  
Atsushi Iguchi ◽  
Shiro Yamai ◽  
...  

ABSTRACT An enrichment broth was developed for the efficient isolation of Escherichia coli O157 from radish sprouts. The broth was buffered peptone water containing 0.5% sodium thioglycolate (STG-BPW), which was designed to allow growth of E. coli O157 in starved and unstarved states. However, this medium suppressed the growth of non-carbohydrate-fermenting obligate aerobes whose colonial appearance on sorbitol MacConkey agar containing cefixime and tellurite (CT-SMAC) resembled that of E. coli O157. Both starved and unstarved cells of E. coli O157 experimentally inoculated into radish sprouts were successfully recovered with STG-BPW enrichment in all cases, most of which showed marked disappearance of E. coli O157-like colonies on CT-SMAC.


2002 ◽  
Vol 65 (1) ◽  
pp. 26-32 ◽  
Author(s):  
MEHMET CALICIOGLU ◽  
CHARLES W. KASPAR ◽  
DENNIS R. BUEGE ◽  
JOHN B. LUCHANSKY

Beef carcass quarters and fat-covered subprimal cuts were suspended vertically and inoculated with a bovine manure slurry containing a five-strain mixture of Escherichia coli O157:H7 to deliver about 4 to 5 log10 CFU/cm2. To identify treatments that would improve the effectiveness of spraying with lactic acid (LA), the inoculated quarters and cuts were treated as follows: experiment A, (i) not treated (control), (ii) sprayed with 2% (vol/vol) LA, (iii) tempered at 21°C for 4 h, and (iv) tempered and then sprayed with LA; experiment B, (v) sprayed with water, (vi) sprayed with LA, (vii) sprayed with LA containing 0.5% (vol/vol) sodium benzoate (SB), and (viii) sprayed with LA containing SB and 5% (vol/vol) Tween 20 (TW20); and experiment C, (ix) sprayed with water (no prespray), (x) presprayed with TW20 and then sprayed with LA, and (xi) presprayed with TW20 and then sprayed with LA containing SB. In experiment A, spraying carcasses with LA significantly (P < 0.05) reduced the numbers of E. coli Biotype I and serotype O157:H7 after 1 and 3 days of storage, respectively. The tempering process employed did not affect the effectiveness of the LA spray on either type of E. coli. In experiment B, there was no significant difference in the reduction of E. coli O157:H7 on subprimal cuts sprayed with water and that on cuts sprayed with LA alone or with LA in combination with SB and TW20 after 1 or 3 days of storage (total reductions ranged from about 1.6 to 2.8 log10 CFU/cm2). In experiment C, prespraying subprimal cuts with TW20 significantly (P < 0.05) increased the effectiveness of LA (reductions of 2.8 and 3.2 log10 CFU/cm2, respectively) and that of LA with SB (reductions of 2.6 and 3.3 log10 CFU/cm2, respectively) compared with spraying with water alone (reductions of ca. 1.0 and 2.0 log10 CFU/cm2, respectively) after 1 and 3 days of storage, respectively. In a separate experiment, the incorporation of TW20 (0.1 or 0.25%) into buffered peptone water prior to the maceration of excised carcass surface samples resulted in the recovery of significantly larger numbers (ca. 5.1 to 5.2 log10 CFU/cm2) of E. coli O157:H7 cells than did the control treatment without added TW20 (ca. 3.8 to 4.6 log10 CFU/cm2). These results demonstrate that the treatment of beef carcasses with LA reduces the number of viable E. coli O157:H7 cells and that this inactivation or removal by LA is enhanced by prespraying of the carcass with a 5% solution of TW20.


1999 ◽  
Vol 62 (5) ◽  
pp. 444-450 ◽  
Author(s):  
R. L. BUCHANAN ◽  
S. G. EDELSON ◽  
R. L. MILLER ◽  
G. M. SAPERS

The extent and location of Escherichia coli O157:H7 contamination after intact apples were immersed in cold (2°C) 1% peptone water containing approximately 3 × 107 CFU/ml was assessed using four apple varieties, Golden Delicious, McIntosh, Red Delicious, and Braeburn. Room temperature and refrigerated apples were used to determine the effect of temperature differential on E. coli infiltration. The highest levels of E. coli were associated with the outer core region of the apple, followed by the skin. Apples were subsequently treated by immersing them for 1 min in 2,000 mg/liter sodium hypochlorite, followed by a 1-min tapwater rinse. This treatment reduced pathogen levels by 1- to 3-log cycles but did not eliminate the microorganism, particularly from the outer core region. While E. coli was not detected in the inner core of most apples, warm fruit immersed in cold peptone water occasionally internalized the pathogen. The frequency and extent of internalization of the pathogen was less when cold apples were immersed in cold peptone water. Subsequent dye uptake studies with Golden Delicious apples indicated that approximately 6% of warm apples immersed into a cold dye solution accumulated dye via open channels leading from the blossom end into the core region. However, dye uptake did not occur when the dye solution was warmer than the apple.


2002 ◽  
Vol 128 (3) ◽  
pp. 357-362 ◽  
Author(s):  
N. FEGAN ◽  
P. DESMARCHELIER

There is very little human disease associated with enterohaemorrhagic Escherichia coli O157 in Australia even though these organisms are present in the animal population. A group of Australian isolates of E. coli O157:H7 and O157:H- from human and animal sources were tested for the presence of virulence markers and compared by XbaI DNA macrorestriction analysis using pulsed-field gel electrophoresis (PFGE). Each of 102 isolates tested contained the gene eae which encodes the E. coli attaching and effacing factor and all but one carried the enterohaemolysin gene, ehxA, found on the EHEC plasmid. The most common Shiga toxin gene carried was stx2c, either alone (16%) or in combination with stx1 (74%) or stx2 (3%). PFGE grouped the isolates based on H serotype and some clusters were source specific. Australian E. coli O157:H7 and H- isolates from human, animal and meat sources carry all the virulence markers associated with EHEC disease in humans therefore other factors must be responsible for the low rates of human infection in Australia.


2020 ◽  
Vol 152 ◽  
pp. 15667-15675
Author(s):  
Chakirath Folakè Arikè Salifou ◽  
Cyrille Boko ◽  
Isidore Houaga ◽  
Raoul Agossa ◽  
Isabelle Ogbankotan ◽  
...  

Objectives: The study aimed to search for E. coli O157 and non-O157 in milk, meat and faeces of cattle, sheep and pigs slaughtered in Cotonou. Methodology and Results: One hundred and Seventy-Five (175) samples including 25 meat, 25 faeces per species and 25 milk from cattle were analysed for E. coli O157; O26 and O111 and the virulence genes were identified by PCR. The SAS software (1998) and the bilateral Z test were used to calculate and compare the identification frequencies. E. coli O157 was identified in 4% of cattle faeces, 4% of sheep faeces, and 20% of beef and, in 20% of milk samples. E. coli O26 was identified in 12% of cattle faeces and, in 8% of beef samples. E. coli O111 was identified at frequencies of 8%, and 12% in faeces of sheep and pigs, respectively. The eae gene was detected in 4% of beef, ovine meat, milk, pig faeces and in sheep faeces. stx1 was detected in 8% of milk, and in 4% of bovine and sheep faeces. The strains possessing the gene were all of E. coli O157 with the exception of one from pig faeces identified as O111. Conclusions and application of findings: The presence of these serogroups of E. coli with virulence genes poses a real food safety problem in Benin. This study findings must be taken into account for risk assessment and management related to the consumption of food of animal origin. Keywords: Benin, E. coli O157, O26, O111, faeces, meat, milk


2012 ◽  
Vol 47 (No. 6) ◽  
pp. 149-158 ◽  
Author(s):  
J. Osek ◽  
P. Gallien

Fourteen Escherichia coli O157 strains isolated from cattle and pigs in Poland and in Germany were investigated, using PCR, for the genetic markers associated with Shiga toxin-producing E. coli (STEC). Only two strains, both of cattle origin, were positive for the fliC (H7) gene and could be classified as O157 : H7. Nine isolates had stx shiga toxin genes, either stx1 (1 strain), stx2 (4 isolates) or both (4 strains). The stx2-carrying samples were further subtyped by PCR for the stx2c, stx2d, and stx2e toxin variants. It was shown that all but one stx2-positive bacteria possessed the stx2c Shiga toxin gene type and one stx2 STEC isolate had the stx2d virulence factor sub-type. The eaeA (intimin) gene was found in 9 strains (8 isolates from cattle and one strain from pigs); all of them harboured the genetic marker characteristic of the gamma intimin variant. The translocated intimin receptor (tir) gene was detected in 7 isolates tested and among them only one tir-positive strain was recovered from pigs. The ehly E. coli enterohemolysin gene was amplified in all but one strains obtained from cattle and only in one isolate of porcine origin. The genetic relatedness of the analysed E. coli O157 strains was examined by restriction fragment length polymorphism (RFLP) of chromosomal DNA digested with XbaI. Two distinct but related RFLP pattern clusters were observed: one with 9 strains (8 isolates of bovine origin and one strain obtained from pigs) and the other one comprises the remaining 5 E. coli isolates (4 of porcine origin and one strain recovered from cattle). The results suggest that pigs, besides cattle, may be a reservoir of E. coli O157 strains potentially pathogenic to humans. Moreover, epidemiologically unrelated isolates of the O157 serogroup, recovered from different animal species, showed a clonal relationship as demonstrated by the RFLP analysis.


2000 ◽  
Vol 63 (6) ◽  
pp. 819-821 ◽  
Author(s):  
DAVID W. K. ACHESON

Escherichia coli O157:H7 is but one of a group of Shiga toxin-producing E. coli (STEC) that cause both intestinal disease such as bloody and nonbloody diarrhea and serious complications like hemolytic uremic syndrome (HUS). While E. coli O157: H7 is the most renowned STEC, over 200 different types of STEC have been documented in meat and animals, at least 60 of which have been linked with human disease. A number of studies have suggested that non-O157 STEC are associated with clinical disease, and non-O157 STEC are present in the food supply. Non-O157 STEC, such as O111 have caused large outbreaks and HUS in the United States and other countries. The current policy in the United States is to examine ground beef for O157:H7 only, but restricting the focus to O157 will miss other important human STEC pathogens.


2000 ◽  
Vol 68 (3) ◽  
pp. 1400-1407 ◽  
Author(s):  
Phillip I. Tarr ◽  
Sima S. Bilge ◽  
James C. Vary ◽  
Srdjan Jelacic ◽  
Rebecca L. Habeeb ◽  
...  

ABSTRACT The mechanisms used by Shiga toxin (Stx)-producingEscherichia coli to adhere to epithelial cells are incompletely understood. Two cosmids from an E. coliO157:H7 DNA library contain an adherence-conferring chromosomal gene encoding a protein similar to iron-regulated gene A (IrgA) ofVibrio cholerae (M. B. Goldberg, S. A. Boyko, J. R. Butterton, J. A. Stoebner, S. M. Payne, and S. B. Calderwood, Mol. Microbiol. 6:2407–2418, 1992). We have termed the product of this gene the IrgA homologue adhesin (Iha), which is encoded by iha. Iha is 67 kDa in E. coliO157:H7 and 78 kDa in laboratory E. coli and is structurally unlike other known adhesins. DNA adjacent toiha contains tellurite resistance loci and is conserved in structure in distantly related pathogenic E. coli, but it is absent from nontoxigenic E. coli O55:H7, sorbitol-fermenting Stx-producing E. coli O157:H−, and laboratory E. coli. We have termed this region the tellurite resistance- and adherence-conferring island. We conclude that Iha is a novel bacterial adherence-conferring protein and is contained within an E. coli chromosomal island of conserved structure. Pathogenic E. coli O157:H7 has only recently acquired this island.


Sign in / Sign up

Export Citation Format

Share Document