Antioxidant Activity of Resveratrol Compared with Common Food Additives

2001 ◽  
Vol 64 (3) ◽  
pp. 379-384 ◽  
Author(s):  
M. ANTONIA MURCIA ◽  
MAGDALENA MARTÍNEZ-TOMÉ

Resveratrol is a phenolic compound of the stilbene family present in wines and various parts of the grape, including the skin. In this study, the antioxidant and prooxidant activities of resveratrol were compared with other antioxidants (butylated hydroxytoluene [BHT], butylated hydroxyacetone [BHA], phenol, propyl gallate [PG], sodium tripolyphosphate [TPP], α-tocopherol, and vanillin) widely used in foods. The ability of these compounds to inhibit lipid peroxidation was as follows: BHA > resveratrol > PG > tripolyphosphate > vanillin > phenol > BHT > α-tocopherol, the first three inhibiting the peroxidation in a concentration-dependent manner. The order of OH scavenger activity of the tested compounds was BHA > TPP > BHT. Resveratrol and vanillin produced between 10 to 7% and 16 to 10% inhibition of the deoxyribose attack, respectively, but they do not scavenge OH▪. Neither the resveratrol analyzed nor PG or the rest of compounds reacted with H2O2 and must be considered inefficient in catalyzing any subsequent oxidation. The ability to scavenge HOCl was, in decreasing order, PG > resveratrol > α-tocopherol > phenol. The other compounds did not scavenge HOCl.

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5223 ◽  
Author(s):  
Luana T. Dalvi ◽  
Daniel C. Moreira ◽  
Antonio Alonso ◽  
Isa G.J. de Avellar ◽  
Marcelo Hermes-Lima

This study aimed to characterize the antioxidant properties of Rama Forte persimmon, a tannin-rich fruit variety produced in Brazil. Extracts prepared with lyophilized pulps from fruits obtained in local markets were analyzed individually to evaluate the extent of antioxidant protection and investigate the antioxidant mechanism. Iron-mediated hydroxylation of 5,5-dimethyl-1-pirrolidine-N-oxide, determined by electron paramagnetic resonance (EPR), and oxidative degradation of 2-deoxyribose (2-DR) were inhibited by fruit extracts in a dose-dependent manner. There was a considerable individual variability in inhibition of 2-DR degradation by individual fruits. Higher protection of 2-DR degradation (by the extracts) was observed in Fe(III)-citrate/ascorbate in comparison with Fe(III)-EDTA/ascorbate system; however, antioxidant effectiveness of fruit extracts was not diminished by increasing EDTA concentration by 10-fold. Other competition experiments using the 2-DR assay (varying pre-incubation time and 2-DR concentration) indicated that protection comes mainly from free radical scavenging, rather that metal chelation antioxidant activity. Persimmon extracts prevented iron-mediated lipid peroxidation in rat liver homogenates, which correlated significantly with the inhibition of 2-DR oxidation. Finally, sugar content of individual fruits correlated inversely with inhibition of 2-DR degradation, which could indicate that maturation decreases soluble antioxidant concentration or efficiency. In conclusion, lipid peroxidation, 2-DR and EPR experiments indicated that extracts from commercial fruits showed mainly radical-scavenger activity and relevant antioxidant activity.


1999 ◽  
Vol 6 (3) ◽  
pp. 169-175 ◽  
Author(s):  
M. Gupta ◽  
R. K. Kale ◽  
P. P. Kulkarni ◽  
S. B. Padhye

Dafone inhibits the lipid peroxidation significantly in a concentration dependent manner. The inhibition was found to be an uncompetitive type with the inhibition constant (Ki) of 62.5 μM On the other hand complexation with metal ions results in a significant reversal from antioxidant to pro-oxidant properties for the resulting complexes which are cationic and with associated halometallate anions. The nature of the potentiation in case of the ferric compound was of competitive type with activation constant (Ka) having the value 32.5 μM . The neutral copper-dafonate complex, however, inhibits lipid peroxidation with increase in concentration.


2001 ◽  
Vol 64 (9) ◽  
pp. 1412-1419 ◽  
Author(s):  
MAGDALENA MARTÍNEZ-TOMÉ ◽  
ANTONIA M. JIMÉNEZ ◽  
SILVERIO RUGGIERI ◽  
NATALE FREGA ◽  
ROSANNA STRABBIOLI ◽  
...  

In this study, the antioxidant properties of Mediterranean food spices (annatto, cumin, oregano, sweet and hot paprika, rosemary, and saffron) at 5% concentration and of common food additives (butylated hydroxyanisole [BHA], butylated hydroxytoluene[BHT], and propyl gallate) at 100 μg/g are compared. The ability of these compounds to inhibit lipid peroxidation was, in decreasing order, rosemary > oregano > propyl gallate > annatto > BHA > sweet paprika > cumin > hot paprika > saffron > BHT. Deoxyribose damage is partially inhibited in the presence of cumin extract that exhibits the strongest protective action. The rest of the spices also protect deoxyribose better than the BHA and BHT used in the assay. Finally, the results obtained in the assay point to the prooxidant effect of propyl gallate. Hydrogen peroxide scavenging activity is measured by using peroxidase-based assay systems. In aqueous medium, the spice extracts show lower antioxidant activity than propyl gallate, the decreasing order being cumin > oregano > annatto > rosemary > hot paprika > sweet paprika. BHA and BHT did not scavenge H2O2. Spices are able to scavenge HOCl and protect α1-antiproteinase. The results indicate that rosemary and oregano are more effective HOCl scavengers than the other substances analyzed, which, in decreasing order, were propyl gallate, annatto, sweet and hot paprika, saffron, and cumin. The effect of Mediterranean food spices on the oxidative stability of refined olive oil tested by the Rancimat method was compared with common food additives during storage (72 h, 2, 4, and 6 months) at room temperature. The results showed that the spice extracts analyzed have significant stabilizing effects (P < 0.05).


2020 ◽  
Vol 8 (2) ◽  
pp. 94-98
Author(s):  
Mohammad Reza Rezaei ◽  
Ali Es-haghi ◽  
Parichehreh Yaghmaei ◽  
Maryam Ghobeh

Background: Plants comprise great antioxidant sources as a result of their redox and biochemical components, which are rich in secondary metabolites such as phenolic acids, flavonoids, and other constituents. Haplophyllum obtusifolium from polygonaceae is widely used for preventing and managing diabetes. This study investigated the antibacterial and antioxidant activities of silver nanoparticles (AgNPs) biosynthesized by H. obtusifolium. Methods: The aerial parts of H. obtusifolium were gathered from the north of Khorasan Razavi province, Iran and desiccated at the chamber temperature. The shoots were powdered by grinding, 5 g of the powder was mixed with 250 mL of deionized water, and the resultant blend was then filtered. Bactericidal properties and antioxidant activity of the nanoparticles were assessed using disk diffusion and DPPH (2, 2-diphenyl-1-picrylhydrazyl) tests, respectively. Results: The results of this study showed that the biosynthesized nanoparticles exhibited antibacterial activity against a gram-negative (Klebsiella pneumoniae) bacterium, but they had no effects on gram-positive Staphylococcus epidermidis. Antioxidant test results showed that these nanoparticles were capable of eliminating DPPH radicals in a concentration-dependent manner so that a more potent antioxidant activity was seen in higher concentrations of the nanoparticles. Conclusion: Our results suggested that H. obtusifolium can be used as a key source of antioxidants/ antimicrobial agents in food and pharmaceutical industries.


2008 ◽  
Vol 5 (s2) ◽  
pp. 1123-1132 ◽  
Author(s):  
H. Vijay Kumar ◽  
C. R. Gnanendra ◽  
Nagaraja Naik ◽  
D. Channe Gowda

Dibenz[b,f]azepine and its five derivatives bearing different functional groups were synthesized by known methods. The compounds thus synthesized were evaluated for antioxidant potential through different in vitro models such as (DPPH) free radical scavenging activity,ß-carotene-linoleic acid model system, reducing power assay and phosphomolybdenum method. Under our experimental condition among the synthesized compounds dibenz[b,f]azepine (a) and 10-methoxy-5H-dibenz[b,f]azepine (d) exhibited potent antioxidant activity in concentration dependent manner in all the above four methods. Butylated hydroxyl anisole (BHA) and ascorbic acid (AA) were used as the reference antioxidant compounds. The most active compounds like dibenz[b,f]azepine and its methoxy group substituent have shown more promising antioxidant and radical scavengers compared to the standards like BHA and ascorbic acid. It is conceivable from the studies that the tricyclic amines,i.e. dibenz[b, f]azepine and some of its derivatives are effective in their antioxidant activity properties.


1997 ◽  
Vol 52 (11-12) ◽  
pp. 817-823 ◽  
Author(s):  
Janina Gabrielska ◽  
Jan Oszmiańsk ◽  
Romuald Żyłka ◽  
Małgorzata Komorowska

Abstract Trihydroxyflavones of Scutellaria baicalensis, Antioxidant Activity, Liposome, Peroxidation, MDA The antioxidant effect of a trihydroxyflavone extract from Scutellaria baicalensis on oxida­ tion induced by ultraviolet light, was studied with phosphatidylcholine liposome membrane. Also, as standards, the antioxidative activity of baicalin, wogonin, baicalein and butylated hydroxytoluene (BHT) was investigated. Comparison of the protective effects of thecom­pounds studied against photoinduced lipid peroxidation in lecithin liposome membranes showed that: (1) the inhibitory effect of those compounds (at 1.2 mol% antioxidant content in liposomes) on TBA reactive materials from lipid peroxidation decreased in the order of baicalin > BHT ≅ Scutellaria baicalensis. These were found much greater than wogonin and baicalein; (2) the depressed effect of those compounds (at 1.1 mol% compounds content in liposomes) on the production of conjugated dienes (proportional to oxidation index) could be classified as follows: Scutellaria baicalensis ≅ baicalin > BHT, these three were found more active much greather than baicalein and wogonin. Results obtained by ESR measure­ment confirm that Scutellaria baicalensis extract and the BHT compound significantly de­ pressed the effect of liposome oxidation. It was found that the new trihydroxyflavones of Scutellaria baicalensis, ensured a very satisfactory concentration-dependent protection of the liposome membrane against UV-induced oxidation. These findings suggest that some of the beneficial effects of the extract of the Scutellaria baicalensis can be mediated in certain diseases (for example in skin diseases) by their ability to scavenge free radicals and by their protective effect on lipid peroxidation caused by sunlight irradiation.


Toxins ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 140 ◽  
Author(s):  
Tadahiro Suzuki ◽  
Masatoshi Toyoda

Aflatoxins (AF), produced by several Aspergillus species, are visible under ultraviolet light if present in high amounts. AF detection can be improved by adding activated carbon, which enhances the observation efficiency of weakly AF-producing fungi. However, commercial activated carbon products differ in their characteristics, making it necessary to investigate which characteristics affect method reproducibility. Herein, the addition of 10 activated carbon products resulted in different AF production rates in each case. The differences in the production of aflatoxin G1 (AFG1) were roughly correlated to the observation efficiency in the plate culture. Trace element analysis showed that the concentrations of several metal ions differed by factors of >100, and the carbons that most effectively increased AFG1 production contained higher amounts of metal ions. Adding 5 mg L−1 Fe or Mg ions increased AFG1 production even without activated carbon. Furthermore, co-addition of both ions increased AFG1 production stably with the addition of carbon. When varying the concentration of additives, only AFG1 production increased in a concentration-dependent manner, while the production of all the other AFs decreased or remained unchanged. These findings suggest that a key factor influencing AF production is the concentration of several metal ions in activated carbon and that increasing AFG1 production improves AF detectability.


2015 ◽  
Vol 60 (2) ◽  
pp. 818-826 ◽  
Author(s):  
Eun-Young Jang ◽  
Minjung Kim ◽  
Mi Hee Noh ◽  
Ji-Hoi Moon ◽  
Jin-Yong Lee

ABSTRACTPolyphosphate (polyP) has gained a wide interest in the food industry due to its potential as a decontaminating agent. In this study, we examined the effect of sodium tripolyphosphate (polyP3; Na5P3O10) against planktonic and biofilm cells ofPrevotella intermedia, a major oral pathogen. The MIC of polyP3 againstP. intermediaATCC 49046 determined by agar dilution method was 0.075%, while 0.05% polyP3 was bactericidal againstP. intermediain time-kill analysis performed using liquid medium. A crystal violet binding assay for the assessment of biofilm formation byP. intermediashowed that sub-MICs of polyP3 significantly decreased biofilm formation. Under the scanning electron microscope, decreased numbers ofP. intermediacells forming the biofilms were observed when the bacterial cells were incubated with 0.025% or higher concentrations of polyP3. Assessment of biofilm viability with LIVE/DEAD staining and viable cell count methods showed that 0.05% or higher concentrations of polyP3 significantly decreased the viability of the preformed biofilms in a concentration-dependent manner. The zone sizes of alpha-hemolysis formed on horse blood agar produced byP. intermediawere decreased in the presence of polyP3. The expression of the genes encoding hemolysins and the genes of the hemin uptake (hmu) locus was downregulated by polyP3. Collectively, our results show that polyP is an effective antimicrobial agent againstP. intermediain biofilms as well as planktonic phase, interfering with the process of hemin acquisition by the bacterium.


Biologia ◽  
2012 ◽  
Vol 67 (6) ◽  
Author(s):  
Anjuli Sood ◽  
Charu Kalra ◽  
Sunil Pabbi ◽  
Prem Uniyal

AbstractThe present investigation was carried out to decipher the interplay between paraquat (PQ) and exogenously applied nitric oxide (NO) in Azolla microphylla. The addition of PQ (8 μM) increased the activities of superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (GPX), ascorbate peroxidase (APX) by 1.7, 2.7, 3.9 and 1.9 folds respectively than that control in the fronds of Azolla. The amount of H2O2 was also enhanced by 2.7 times in the PQ treated plants than that of control. The supplementation of sodium nitroprusside (SNP) from 8–100 μM along with PQ, suppressed the activities of antioxidative enzymes and the amount of H2O2 compared to PQ alone. The drop in the activity of antioxidative enzymes — SOD, GPX, CAT and APX was highest (39.9%, 48.4%, 41.6% and 41.3% respectively) on the supplementation of 100 μM SNP with PQ treated fronds compared to PQ alone. The addition of NO scavengers along with NO donor in PQ treated fronds neutralized the effect of exogenously supplied NO. This indicates that NO can effectively protect Azolla against PQ toxicity by quenching reactive oxygen species. However, 200 μM of SNP reversed the protective effect of lower concentration of NO donor against herbicide toxicity. Our study clearly suggests that (i) SNP released NO can work both as cytoprotective and cytotoxic in concentration dependent manner and (ii) involvement of NO in protecting Azolla against PQ toxicity.


2000 ◽  
Vol 20 (11) ◽  
pp. 1529-1536 ◽  
Author(s):  
Eileen McCracken ◽  
V. Valeriani ◽  
C. Simpson ◽  
T. Jover ◽  
James McCulloch ◽  
...  

Lipid peroxidation and the cytotoxic by-product 4-hydroxynonenal (4-HNE) have been implicated in neuronal perikaryal damage. This study sought to determine whether 4-HNE was involved in white matter damage in vivo and in vitro. Immunohistochemical studies detected an increase in cellular and axonal 4-HNE within the ischemic region in the rat after a 24-hour period of permanent middle cerebral artery occlusion. Exogenous 4-HNE (3.2 nmol) was stereotaxically injected into the subcortical white matter of rats that were killed 24 hours later. Damaged axons detected by accumulation of β-amyloid precursor protein (β-APP) were observed transversing medially and laterally away from the injection site after intracerebral injection of 4-HNE. In contrast, in the vehicle-treated animals, axonal damage was restricted to an area immediately surrounding the injection site. Exogenous 4-HNE produced oligodendrocyte cell death in culture in a time-dependent and a concentration-dependent manner. After 4 hours, the highest concentration of 4-HNE (50 μmol/L) produced 100% oligodendrocyte cell death. Data indicate that lipid peroxidation and production of 4-HNE occurs in white matter after cerebral ischemia and the lipid peroxidation by-product 4-HNE is toxic to axons and oligodendrocytes.


Sign in / Sign up

Export Citation Format

Share Document