Predictive Model for the Combined Effect of Temperature, Sodium Lactate, and Sodium Diacetate on the Heat Resistance of Listeria monocytogenes in Beef†

2003 ◽  
Vol 66 (5) ◽  
pp. 804-811 ◽  
Author(s):  
VIJAY K. JUNEJA

The effects of heating temperature (60 to 73.9°C), sodium lactate (NaL; 0.0 to 4.8% [wt/wt]), and/or sodium diacetate (SDA; 0.0 to 0.25% [wt/wt]) and of the interactions of these factors on the heat resistance of a five-strain mixture of Listeria monocytogenes in 75% lean ground beef were examined. Thermal death times for L. monocytogenes in filtered stomacher bags in a circulating water bath were determined. The recovery medium was tryptic soy agar supplemented with 0.6% yeast extract and 1% sodium pyruvate. Decimal reduction times (D-values) were calculated by fitting a survival model to the data with a curve-fitting program. The D-values were analyzed by second-order response surface regression for temperature, NaL level, and SDA level. The D-values observed for beef with no NaL or SDA at 60, 65, 71.1, and 73.9°C were 4.67, 0.72, 0.17, and 0.04 min, respectively. The addition of 4.8% NaL to beef increased heat resistance at all temperatures, with D-values ranging from 14.3 min at 60°C to 0.13 min at 73.9°C. Sodium diacetate interacted with NaL, thereby reducing the protective effect of NaL and rendering L. monocytogenes in beef less resistant to heat. A mathematical model describing the combined effect of temperature, NaL level, and SDA level on the thermal inactivation of L. monocytogenes was developed. This model can predict D-values for any combination of temperature, NaL level, and SDA level that is within the range of those tested. This predictive model will have substantial practical importance to processors of cooked meat, allowing them to vary their thermal treatments of ready-to-eat meat products in a safe manner.

2003 ◽  
Vol 66 (7) ◽  
pp. 1216-1221 ◽  
Author(s):  
M. A. LIHONO ◽  
A. F. MENDONCA ◽  
J. S. DICKSON ◽  
P. M. DIXON

The effects and interactions of 27 combinations of heating temperature (57.5 to 62.5°C), sodium pyrophosphate (SPP) level (0 to 0.5%, wt/vol), and salt (NaCl) level (0 to 6%, wt/vol) on the thermal inactivation of starved Listeria monocytogenes ATCC 19116 in pork slurry were investigated. A split-split plot experimental design was used to compare all 27 combinations. L. monocytogenes survivors were enumerated on tryptic soy agar supplemented with 0.6% yeast extract. The natural logarithm (loge) of the means of decimal reduction times (D-values) were modeled as a function of temperature, SPP level, and NaCl level. Increasing concentrations of SPP or NaCl protected starved L. monocytogenes from the destructive effect of heat. For example, D-values for the pathogen at 57.5°C in pork slurry with 0, 3, and 6% NaCl were 2.79, 7.75, and 14.59 min, respectively. All three variables interacted to affect the thermal inactivation of L. monocytogenes. A mathematical model describing the combined effect of temperature, SPP level, and NaCl level on the thermal inactivation of starved L. monocytogenes was developed. There was strong correlation (R2 = 0.97) between loge D-values predicted by the model and those observed experimentally. The model can predict D-values for any combination of variables that falls within the range of those tested. This predictive model can be used to assist food processors in designing thermal processes that include an adequate margin of safety for the control of L. monocytogenes in processed meats.


1999 ◽  
Vol 62 (9) ◽  
pp. 986-993 ◽  
Author(s):  
VIJAY K. JUNEJA ◽  
BRIAN S. EBLEN

The effects and interactions of heating temperature (55 to 65°C), pH (4 to 8), salt (NaCl; 0 to 6%, wt/vol), and sodium pyrophosphate (SPP; 0 to 0.3%, wt/vol) on the heat inactivation of a four-strain mixture of Listeria monocytogenes in beef gravy were examined. A factorial experimental design comparing 48 combinations of heating temperature, salt concentration, pH value, and SPP content was used. Heating was carried out using a submerged-coil heating apparatus. The recovery medium was plate count agar supplemented with 0.6% yeast extract and 1% sodium pyruvate. Decimal reduction times (D-values) were calculated by fitting a survival model to the data with a curve-fitting program. The D-values were analyzed by second-order response surface regression for temperature, pH, NaCl, and SPP levels. Whereas increasing the NaCl concentration protected L. monocytogenes against the lethal effect of heat, high SPP concentrations increased heat sensitivity. Also, low pH values increased heat sensitivity of L. monocytogenes. The four variables interacted to affect the inactivation of the pathogen. Thermal resistance of L. monocytogenes can be lowered by combining these intrinsic factors. A predictive model that described the combined effect of temperature, pH, NaCl, and SPP levels on thermal resistance of L. monocytogenes was developed. The model can predict D-values for any combination of temperature, pH, NaCl, and SPP that are within the range of those tested. Using this predictive model, food processors should be able to design adequate thermal regimes to eliminate L. monocytogenes in thermally processed foods.


2006 ◽  
Vol 69 (7) ◽  
pp. 1552-1560 ◽  
Author(s):  
K. K. SCHULTZE ◽  
R. H. LINTON ◽  
M. A. COUSIN ◽  
J. B. LUCHANSKY ◽  
M. L. TAMPLIN

A modified Gompertz equation was used to model the effects of temperature (55, 60, and 65°C), sodium lactate (0, 2.4, and 4.8%), and sodium diacetate (0, 0.125, and 0.25%) on inactivation of Listeria monocytogenes strain MFS 102 (serotype 4b) in frankfurter slurry. The effects of these factors were determined on the shouldering region (parameter A), maximum death rate (parameter B), and tailing region (parameter C) of microbial inactivation curves. Increased temperature or sodium diacetate concentrations increased the death rate, whereas increased sodium lactate concentrations decreased heat resistance. Complex two-way interactive effects were also observed. As both temperature and sodium lactate increased, the death rate decreased; however, as temperature and sodium diacetate increased, the death rate increased. The effect of the interaction between sodium lactate and sodium diacetate on the maximum death rate varied with temperature. Increases in both acidulants at temperatures above 56.7°C decreased the death rate, whereas at temperatures below 56.7°C, increases in both acidulants increased the death rate. To test for significant differences between treatments, D-values were calculated and compared. This comparison revealed that, in general, sodium lactate increased heat resistance and sodium diacetate decreased heat resistance of L. monocytogenes. This information is important for reducing and minimizing contamination during postprocessing thermal treatments.


2014 ◽  
Vol 77 (10) ◽  
pp. 1696-1702 ◽  
Author(s):  
VIJAY K. JUNEJA ◽  
JIMENA GARCIA-DÁVILA ◽  
JULIO CESAR LOPEZ-ROMERO ◽  
ETNA AIDA PENA-RAMOS ◽  
JUAN PEDRO CAMOU ◽  
...  

The interactive effects of heating temperature (55 to 65°C), sodium chloride (NaCl; 0 to 2%), and green tea 60% polyphenol extract (GTPE; 0 to 3%) on the heat resistance of a five-strain mixture of Listeria monocytogenes in ground turkey were determined. Thermal death times were quantified in bags that were submerged in a circulating water bath set at 55, 57, 60, 63, and 65°C. The recovery medium was tryptic soy agar supplemented with 0.6% yeast extract and 1% sodium pyruvate. D-values were analyzed by second-order response surface regression for temperature, NaCl, and GTPE. The data indicated that all three factors interacted to affect the inactivation of the pathogen. The D-values for turkey with no NaCl or GTPE at 55, 57, 60, 63, and 65°C were 36.3, 20.8, 13.2, 4.1, and 2.9 min, respectively. Although NaCl exhibited a concentration-dependent protective effect against heat lethality on L. monocytogenes in turkey, addition of GTPE rendered the pathogen more sensitive to the lethal effect of heat. GTPE levels up to 1.5% interacted with NaCl and reduced the protective effect of NaCl on heat resistance of the pathogen. Food processors can use the predictive model to design an appropriate heat treatment that would inactivate L. monocytogenes in cooked turkey products without adversely affecting the quality of the product.


2002 ◽  
Vol 65 (2) ◽  
pp. 299-307 ◽  
Author(s):  
JOHN SAMELIS ◽  
GERARD K. BEDIE ◽  
JOHN N. SOFOS ◽  
KEITH E. BELK ◽  
JOHN A. SCANGA ◽  
...  

Contamination of ready-to-eat foods, such as frankfurters, with Listeria monocytogenes, is a major concern that needs to be addressed in order to enhance the safety of these products. The objective of this study was to determine the effectiveness of combinations of antimicrobials included in the formulation of frankfurters against L. monocytogenes inoculated (103 to 104 CFU/cm2) on their surface after peeling and before vacuum packaging. In addition, the antilisterial effect of immersing the packaged products, prepared with or without antimicrobials, in hot (75 or 80°C) water for 30 to 90 s was evaluated. Samples were stored at 4°C for up to 120 days and periodically analyzed for pH and for microbial growth on tryptic soy agar plus 0.6% yeast extract (TSAYE) and PALCAM agar. Sodium lactate (1.8%; 3% of a 60% commercial solution) used alone inhibited growth of L. monocytogenes for 35 to 50 days, whereas when used in combination with 0.25% sodium acetate, sodium diacetate, or glucono-δ-lactone (GDL), sodium lactate inhibited growth throughout storage (120 days). Immersing packaged frankfurters in hot water (80°C, 60 s) reduced inoculated populations of L. monocytogenes by 0.4 to 0.9 log CFU/cm2 and reduced its growth by 1.1 to 1.4 log CFU/cm2 at 50 to 70 days of storage in samples containing 1.8% sodium lactate alone. However, immersion of frankfurters containing no antimicrobials in hot water (75 or 80°C) did not inhibit growth of the pathogen for more than 10 to 20 days, unless one frankfurter was placed per bag and heat treated for 90 s. These results indicate that the inclusion of 1.8% sodium lactate with 0.25% sodium acetate, sodium diacetate, or GDL in cured meat formulations may control L. monocytogenes growth during refrigerated (4°C) storage. Additional studies are required to evaluate the effects of these combinations at abusive temperatures of storage, as well as on additional processed meat formulations and on the sensory quality and shelf life of products.


2006 ◽  
Vol 69 (8) ◽  
pp. 1865-1869 ◽  
Author(s):  
AAKASH KHURANA ◽  
GEORGE B. AWUAH ◽  
BRADLEY TAYLOR ◽  
ELENA ENACHE

Studies were conducted to evaluate the combined effect of selected acidulants (acetic, citric, malic, and phosphoric acid) and heat on foodborne pathogens (Escherichia coli O157:H7 and Listeria monocytogenes) in pureed green beans. To establish a consistent reference point for comparison, the molar concentrations of the acids remained constant while the acid-to-puree ratio, titratable acidity, and undissociated acid were either measured or calculated for a target acidified green beans at a pH of 3.8, 4.2, and 4.6. The D-values at 149°F were used as the criteria for acid efficacy. Generally, acetic acid (puree, pH 3.8 and 4.2) represented the most effective acid with comparatively low D-values irrespective of the target microorganism. A 10-s heating at 149°F inactivated approximately 106 CFU/ml of E. coli O157:H7 in pureed beans at pH 3.8. The efficacy of acetic acid is likely related to the elevated percent titratable acidity, undissociated acid, and acid-to-puree ratio. The effectiveness (which in this study represents the combined effect of acid and heat) of the remaining acids (citric, malic, and phosphoric) at puree pH values of 3.8 and 4.2 were statistically insignificant (α = 0.05). Surprisingly, acetic acid (puree, pH 4.6) appeared to be the least effective as compared to the other acids tested (citric, malic, and phosphoric) especially on E. coli O157:H7 cells, while L. monocytogenes had a similar resistance to all acids at puree pH 4.6. With the exception of citric acid (pH 3.8), acetic acid (pH 4.6), and malic acid (pH 3.8 and 4.6), which were statistically insignificant (P > 0.05), the D-values for L. monocytogenes were statistically different (P ≤ 0.05) and higher than the D-values for E. coli under similar experimental conditions. A conservative process recommendation (referred to as the “safe harbor” process) was found sufficient and applicable to pureed green beans for the pH range studied.


1992 ◽  
Vol 55 (7) ◽  
pp. 492-496 ◽  
Author(s):  
I-PING D. HUANG ◽  
AHMED E. YOUSEF ◽  
ELMER H. MARTH ◽  
M. EILEEN MATTHEWS

Heat resistance of Listeria monocytogenes strains V7 and Scott A in chicken gravy and changes in heat resistance during refrigerated storage were studied. After chicken gravy was made, it was cooled to 40°C, inoculated with 105 CFU L. monocytogenes per ml of gravy, and then stored at 7°C for 10 d. Gravy was heated at 50, 55, 60, and 65°C immediately after inoculation and after 1, 3, 5, and 10 d of refrigerated storage. The D values for strains Scott A and V7 in gravy heated at 50°C at day 0 were 119 and 195 min and at day 10 they were 115 and 119 min, respectively, whereas at 65°C comparable values at day 0 were 0.48 and 0.19 min and at day 10 they were 0.014 and 0.007 min. Heat resistance (expressed as D values) was greater at day 0 than at the end of refrigerated storage. The z values ranged from 3.41 to 6.10°C and were highest at the early stages of chill storage and then decreased at the later stages. Strain V7 was more heat resistant than Scott A at 50°C. Strain Scott A always had a higher z value than did strain V7 at the same storage interval. A heat treatment greater than the 4-D process recommended by the U.S. Department of Agriculture was required to inactivate the large numbers of L. monocytogenes that developed in chicken gravy during refrigerated storage.


1995 ◽  
Vol 58 (7) ◽  
pp. 742-747 ◽  
Author(s):  
SRIKANTH GUNDAVARAPU ◽  
YEN-CON HUNG ◽  
ROBERT E. BRACKETT ◽  
P. MALLIKARJUNAN

The effect of different microwave power levels (240, 400, 560, and 800 W) on the survival of Listeria monocytogenes in inoculated shrimp was investigated. Thermal inactivation rates (D-values) of L. monocytogenes were determined using constant temperature water baths to establish the heat resistance of L. monocytogenes in shrimp. Shrimp were inoculated with approximately 5 × 105 CFU/g of a five-strain mixture of L. monocytogenes. One hundred grams of shrimp were cooked in the microwave oven at different power levels using cooking times predicted by a mathematical model as well as 20% longer times than those obtained from the model. No viable L. monocytogenes were detected in uninoculated shrimp after microwave cooking, but at least one replication of inoculated shrimp tested positive for the presence of Listeria. No viable L. monocytogenes were detected in shrimp cooked at 120% of predicted times.


Sign in / Sign up

Export Citation Format

Share Document