A Predictive Model To Determine the Effects of Temperature, Sodium Pyrophosphate, and Sodium Chloride on Thermal Inactivation of Starved Listeria monocytogenes in Pork Slurry

2003 ◽  
Vol 66 (7) ◽  
pp. 1216-1221 ◽  
Author(s):  
M. A. LIHONO ◽  
A. F. MENDONCA ◽  
J. S. DICKSON ◽  
P. M. DIXON

The effects and interactions of 27 combinations of heating temperature (57.5 to 62.5°C), sodium pyrophosphate (SPP) level (0 to 0.5%, wt/vol), and salt (NaCl) level (0 to 6%, wt/vol) on the thermal inactivation of starved Listeria monocytogenes ATCC 19116 in pork slurry were investigated. A split-split plot experimental design was used to compare all 27 combinations. L. monocytogenes survivors were enumerated on tryptic soy agar supplemented with 0.6% yeast extract. The natural logarithm (loge) of the means of decimal reduction times (D-values) were modeled as a function of temperature, SPP level, and NaCl level. Increasing concentrations of SPP or NaCl protected starved L. monocytogenes from the destructive effect of heat. For example, D-values for the pathogen at 57.5°C in pork slurry with 0, 3, and 6% NaCl were 2.79, 7.75, and 14.59 min, respectively. All three variables interacted to affect the thermal inactivation of L. monocytogenes. A mathematical model describing the combined effect of temperature, SPP level, and NaCl level on the thermal inactivation of starved L. monocytogenes was developed. There was strong correlation (R2 = 0.97) between loge D-values predicted by the model and those observed experimentally. The model can predict D-values for any combination of variables that falls within the range of those tested. This predictive model can be used to assist food processors in designing thermal processes that include an adequate margin of safety for the control of L. monocytogenes in processed meats.

1999 ◽  
Vol 62 (9) ◽  
pp. 986-993 ◽  
Author(s):  
VIJAY K. JUNEJA ◽  
BRIAN S. EBLEN

The effects and interactions of heating temperature (55 to 65°C), pH (4 to 8), salt (NaCl; 0 to 6%, wt/vol), and sodium pyrophosphate (SPP; 0 to 0.3%, wt/vol) on the heat inactivation of a four-strain mixture of Listeria monocytogenes in beef gravy were examined. A factorial experimental design comparing 48 combinations of heating temperature, salt concentration, pH value, and SPP content was used. Heating was carried out using a submerged-coil heating apparatus. The recovery medium was plate count agar supplemented with 0.6% yeast extract and 1% sodium pyruvate. Decimal reduction times (D-values) were calculated by fitting a survival model to the data with a curve-fitting program. The D-values were analyzed by second-order response surface regression for temperature, pH, NaCl, and SPP levels. Whereas increasing the NaCl concentration protected L. monocytogenes against the lethal effect of heat, high SPP concentrations increased heat sensitivity. Also, low pH values increased heat sensitivity of L. monocytogenes. The four variables interacted to affect the inactivation of the pathogen. Thermal resistance of L. monocytogenes can be lowered by combining these intrinsic factors. A predictive model that described the combined effect of temperature, pH, NaCl, and SPP levels on thermal resistance of L. monocytogenes was developed. The model can predict D-values for any combination of temperature, pH, NaCl, and SPP that are within the range of those tested. Using this predictive model, food processors should be able to design adequate thermal regimes to eliminate L. monocytogenes in thermally processed foods.


2003 ◽  
Vol 66 (5) ◽  
pp. 804-811 ◽  
Author(s):  
VIJAY K. JUNEJA

The effects of heating temperature (60 to 73.9°C), sodium lactate (NaL; 0.0 to 4.8% [wt/wt]), and/or sodium diacetate (SDA; 0.0 to 0.25% [wt/wt]) and of the interactions of these factors on the heat resistance of a five-strain mixture of Listeria monocytogenes in 75% lean ground beef were examined. Thermal death times for L. monocytogenes in filtered stomacher bags in a circulating water bath were determined. The recovery medium was tryptic soy agar supplemented with 0.6% yeast extract and 1% sodium pyruvate. Decimal reduction times (D-values) were calculated by fitting a survival model to the data with a curve-fitting program. The D-values were analyzed by second-order response surface regression for temperature, NaL level, and SDA level. The D-values observed for beef with no NaL or SDA at 60, 65, 71.1, and 73.9°C were 4.67, 0.72, 0.17, and 0.04 min, respectively. The addition of 4.8% NaL to beef increased heat resistance at all temperatures, with D-values ranging from 14.3 min at 60°C to 0.13 min at 73.9°C. Sodium diacetate interacted with NaL, thereby reducing the protective effect of NaL and rendering L. monocytogenes in beef less resistant to heat. A mathematical model describing the combined effect of temperature, NaL level, and SDA level on the thermal inactivation of L. monocytogenes was developed. This model can predict D-values for any combination of temperature, NaL level, and SDA level that is within the range of those tested. This predictive model will have substantial practical importance to processors of cooked meat, allowing them to vary their thermal treatments of ready-to-eat meat products in a safe manner.


2014 ◽  
Vol 77 (10) ◽  
pp. 1696-1702 ◽  
Author(s):  
VIJAY K. JUNEJA ◽  
JIMENA GARCIA-DÁVILA ◽  
JULIO CESAR LOPEZ-ROMERO ◽  
ETNA AIDA PENA-RAMOS ◽  
JUAN PEDRO CAMOU ◽  
...  

The interactive effects of heating temperature (55 to 65°C), sodium chloride (NaCl; 0 to 2%), and green tea 60% polyphenol extract (GTPE; 0 to 3%) on the heat resistance of a five-strain mixture of Listeria monocytogenes in ground turkey were determined. Thermal death times were quantified in bags that were submerged in a circulating water bath set at 55, 57, 60, 63, and 65°C. The recovery medium was tryptic soy agar supplemented with 0.6% yeast extract and 1% sodium pyruvate. D-values were analyzed by second-order response surface regression for temperature, NaCl, and GTPE. The data indicated that all three factors interacted to affect the inactivation of the pathogen. The D-values for turkey with no NaCl or GTPE at 55, 57, 60, 63, and 65°C were 36.3, 20.8, 13.2, 4.1, and 2.9 min, respectively. Although NaCl exhibited a concentration-dependent protective effect against heat lethality on L. monocytogenes in turkey, addition of GTPE rendered the pathogen more sensitive to the lethal effect of heat. GTPE levels up to 1.5% interacted with NaCl and reduced the protective effect of NaCl on heat resistance of the pathogen. Food processors can use the predictive model to design an appropriate heat treatment that would inactivate L. monocytogenes in cooked turkey products without adversely affecting the quality of the product.


1992 ◽  
Vol 55 (7) ◽  
pp. 492-496 ◽  
Author(s):  
I-PING D. HUANG ◽  
AHMED E. YOUSEF ◽  
ELMER H. MARTH ◽  
M. EILEEN MATTHEWS

Heat resistance of Listeria monocytogenes strains V7 and Scott A in chicken gravy and changes in heat resistance during refrigerated storage were studied. After chicken gravy was made, it was cooled to 40°C, inoculated with 105 CFU L. monocytogenes per ml of gravy, and then stored at 7°C for 10 d. Gravy was heated at 50, 55, 60, and 65°C immediately after inoculation and after 1, 3, 5, and 10 d of refrigerated storage. The D values for strains Scott A and V7 in gravy heated at 50°C at day 0 were 119 and 195 min and at day 10 they were 115 and 119 min, respectively, whereas at 65°C comparable values at day 0 were 0.48 and 0.19 min and at day 10 they were 0.014 and 0.007 min. Heat resistance (expressed as D values) was greater at day 0 than at the end of refrigerated storage. The z values ranged from 3.41 to 6.10°C and were highest at the early stages of chill storage and then decreased at the later stages. Strain V7 was more heat resistant than Scott A at 50°C. Strain Scott A always had a higher z value than did strain V7 at the same storage interval. A heat treatment greater than the 4-D process recommended by the U.S. Department of Agriculture was required to inactivate the large numbers of L. monocytogenes that developed in chicken gravy during refrigerated storage.


2015 ◽  
Vol 78 (8) ◽  
pp. 1467-1471 ◽  
Author(s):  
EMEFA ANGELICA MONU ◽  
MALCOND VALLADARES ◽  
DORIS H. D'SOUZA ◽  
P. MICHAEL DAVIDSON

Produce has been associated with a rising number of foodborne illness outbreaks. While much produce is consumed raw, some is treated with mild heat, such as blanching or cooking. The objectives of this research were to compare the thermal inactivation kinetics of Listeria monocytogenes, Salmonella enterica, Shiga toxin–producing Escherichia coli (STEC) O157:H7, and non-O157 STEC in phosphate-buffered saline (PBS; pH 7.2) and a spinach homogenate and to provide an estimate of the safety of mild heat processes for spinach. Five individual strains of S. enterica, L. monocytogenes, STEC O157:H7, and non-O157 STEC were tested in PBS in 2-ml glass vials, and cocktails of the organisms were tested in blended spinach in vacuum-sealed bags. For Listeria and Salmonella at 56 to 60°C, D-values in PBS ranged from 4.42 ± 0.94 to 0.35 ± 0.03 min and 2.11 ± 0.14 to 0.16 ± 0.03 min, respectively. D-values at 54 to 58°C were 5.18 ± 0.21 to 0.53 ± 0.04 min for STEC O157:H7 and 5.01 ± 0.60 to 0.60 ± 0.13 min for non-O157 STEC. In spinach at 56 to 60°C, Listeria D-values were 11.77 ± 2.18 to 1.22 ± 0.12 min and Salmonella D-values were 3.51 ± 0.06 to 0.47 ± 0.06 min. D-values for STEC O157:H7 and non-O157 STEC were 7.21 ± 0.17 to 1.07 ± 0.11 min and 5.57 ± 0.38 to 0.99 ± 0.07 min, respectively, at 56 to 60°C. In spinach, z-values were 4.07 ± 0.16, 4.59 ± 0.26, 4.80 ± 0.92, and 5.22 ± 0.20°C for Listeria, Salmonella, STEC O157:H7, and non-O157 STEC, respectively. Results indicated that a mild thermal treatment of blended spinach at 70°C for less than 1 min would result in a 6-log reduction of all pathogens tested. These findings may assist the food industry in the design of suitable mild thermal processes to ensure food safety.


1995 ◽  
Vol 58 (7) ◽  
pp. 742-747 ◽  
Author(s):  
SRIKANTH GUNDAVARAPU ◽  
YEN-CON HUNG ◽  
ROBERT E. BRACKETT ◽  
P. MALLIKARJUNAN

The effect of different microwave power levels (240, 400, 560, and 800 W) on the survival of Listeria monocytogenes in inoculated shrimp was investigated. Thermal inactivation rates (D-values) of L. monocytogenes were determined using constant temperature water baths to establish the heat resistance of L. monocytogenes in shrimp. Shrimp were inoculated with approximately 5 × 105 CFU/g of a five-strain mixture of L. monocytogenes. One hundred grams of shrimp were cooked in the microwave oven at different power levels using cooking times predicted by a mathematical model as well as 20% longer times than those obtained from the model. No viable L. monocytogenes were detected in uninoculated shrimp after microwave cooking, but at least one replication of inoculated shrimp tested positive for the presence of Listeria. No viable L. monocytogenes were detected in shrimp cooked at 120% of predicted times.


Author(s):  
Zhujun Gao ◽  
Qiao Ding ◽  
Chongtao Ge ◽  
Robert C. Baker ◽  
Rohan V. Tikekar ◽  
...  

ABSTRACT While high temperature heat treatments can efficiently reduce pathogen levels, they also affect the quality and nutritional profile of foods, as well as increase the cost of processing. The food additive butyl para-hydroxybenzoate (BPB) was investigated for its potential to synergistically enhance the thermal inactivation at mild heating temperatures (54 – 58 ºC). Four foodborne pathogenic bacteria, Cronobacter sakazakii , Salmonella enterica serotype Typhimurium, attenuated Escherichia coli O157:H7 and Listeria monocytogenes, were cultured to early stationary phase and then subjected to mild heating in a model food matrix (Brain Heart Infusion) containing low levels BPB (≤ 125 ppm). The heating temperature used with each bacterium was selected based on the temperature that would yield an approximate 1 – 2 log reduction over 15 min heating in BHI without BPB using a submerged coil apparatus. The inclusion of BPB at concentrations ≤ 125 ppm resulted in significant enhancement of thermal inactivation, achieving 5 – > 6 log reductions of the Gram-negative strains and D-values of < 100 sec. Listeria monocytogenes achieved at 3 – 4 log reduction with a similar treatment. No significant inactivation was noted in the absence of the mild heating for the same time period. This study provides an additional proof of concept that low temperature inactivation of foodborne pathogens can be realized by synergistic enhancement of thermal inactivation by food components that affect microbial cell membranes.


2016 ◽  
Vol 19 (2) ◽  
pp. 317-324 ◽  
Author(s):  
J. Szczawiński ◽  
M.E. Szczawińska ◽  
A. Łobacz ◽  
A. Jackowska-Tracz

Abstract The aim of the study was to (i) evaluate the behavior of Listeria monocytogenes in a commercially produced yogurt, (ii) determine the survival/inactivation rates of L. monocytogenes during cold storage of yogurt and (iii) to generate primary and secondary mathematical models to predict the behavior of these bacteria during storage at different temperatures. The samples of yogurt were inoculated with the mixture of three L. monocytogenes strains and stored at 3, 6, 9, 12 and 15°C for 16 days. The number of listeriae was determined after 0, 1, 2, 3, 5, 7, 9, 12, 14 and 16 days of storage. From each sample a series of decimal dilutions were prepared and plated onto ALOA agar (agar for Listeria according to Ottaviani and Agosti). It was found that applied temperature and storage time significantly influenced the survival rate of listeriae (p<0.01). The number of L. monocytogenes in all the samples decreased linearly with storage time. The slowest decrease in the number of the bacteria was found in the samples stored at 6°C (D-10 value = 243.9 h), whereas the highest reduction in the number of the bacteria was observed in the samples stored at 15°C (D-10 value = 87.0 h). The number of L. monocytogenes was correlated with the pH value of the samples (p<0.01). The natural logarithm of the mean survival/inactivation rates of L. monocytogenes calculated from the primary model was fitted to two secondary models, namely linear and polynomial. Mathematical equations obtained from both secondary models can be applied as a tool for the prediction of the survival/inactivation rate of L. monocytogenes in yogurt stored under temperature range from 3 to 15°C, however, the polynomial model gave a better fit to the experimental data.


2018 ◽  
Vol 81 (12) ◽  
pp. 2003-2006 ◽  
Author(s):  
A. MCDERMOTT ◽  
P. WHYTE ◽  
N. BRUNTON ◽  
D. J. BOLTON

ABSTRACT Listeria monocytogenes is an important bacterial pathogen in seafood products, but limited information is currently available on the thermal resistance of relevant isolates in seafood. Thermal inactivation studies were undertaken (i) to provide much needed thermal inactivation data for L. monocytogenes in crab meat and (ii) to investigate whether tryptone soya broth (TSB) is representative of crab meat in thermal inactivation studies involving L. monocytogenes. D-values were obtained for a cocktail of two crab isolates (serotypes 1/2a and 4b) at 50, 55, and 60°C. In crab meat, D-values were 174.4, 28.2, and 1.6 min, respectively. Similar D-values of 176.4, 28.8, and 1.4 min were obtained in TSB. The corresponding z-values were 4.9°C (crab meat) and 4.8°C (TSB), respectively. The conclusions were that (i) current pasteurization conditions (e.g., 70°C for 2 min) would achieve complete destruction of any L. monocytogenes present in crab meat and (ii) TSB could be used as a model matrix for assessing the thermal inactivation of L. monocytogenes in crab meat.


Sign in / Sign up

Export Citation Format

Share Document