Microbiological Quality Assessment of Game Meats at Retail in Japan

2017 ◽  
Vol 80 (12) ◽  
pp. 2119-2126 ◽  
Author(s):  
Hiroshi Asakura ◽  
Jun Kawase ◽  
Tetsuya Ikeda ◽  
Mioko Honda ◽  
Yoshimasa Sasaki ◽  
...  

ABSTRACT In this study, we examined the prevalence of Shiga toxin–producing Escherichia coli and Salmonella spp. and the distribution of indicator bacteria in 248 samples of game meats (120 venison and 128 wild boar) retailed between November 2015 and March 2016 in Japan. No Salmonella spp. were detected in any of the samples, whereas Shiga toxin–producing Escherichia coli serotype OUT:H25 (stx2d+, eae−) was isolated from one deer meat sample, suggesting a possible source for human infection. Plate count assays indicated greater prevalence of coliforms and E. coli in wild boar meat than in venison, whereas their prevalence in processing facilities showed greater variation than in animal species. The 16S rRNA ion semiconductor sequencing analysis of 24 representative samples revealed that the abundances of Acinetobacter and Arthrobacter spp. significantly correlated with the prevalence of E. coli, and quantitative PCR analyses in combination with selective plate count assay verified these correlations. To our knowledge, this is the first report to characterize the diversity of microorganisms of game meats at retail in Japan, together with identification of dominant microbiota. Our data suggest the necessity of bottom-up hygienic assessment in areas of slaughtering and processing facilities to improve microbiological safety.

2017 ◽  
Vol 80 (12) ◽  
pp. 2105-2111 ◽  
Author(s):  
Gavin Bailey ◽  
Long Huynh ◽  
Lachlan Govenlock ◽  
David Jordan ◽  
Ian Jenson

ABSTRACT Salmonella contamination of ground beef has been viewed as originating from the surface of carcasses. Recent studies have identified lymph nodes as a potential source of Salmonella contamination because these tissues play an active role in containment of pathogens in the live animal and because some lymph nodes are unavoidably present in manufacturing beef trimmings or primal cuts that may be incorporated into ground beef. A survey was conducted of the microbiological status of lymph nodes from Australian cattle at the time of slaughter to determine the prevalence of microbiological contamination. Sets of lymph nodes (n = 197), consisting of the superficial cervical (prescapular), prepectoral, axillary, presternal, popliteal, ischiatic, subiliac (precrural), coxalis, and iliofemoralis (deep inguinal), were collected from five geographically separated Australian abattoirs over a period of 14 months. Samples were tested for the presence of Salmonella spp. and Shiga toxin–producing Escherichia coli by BAX PCR assay. Aerobic plate count, E. coli, and coliforms were enumerated with a lower limit of detection of 80 CFU per node. The observed prevalence of Salmonella within peripheral lymph nodes was 0.48% (7 of 1,464). Two of the seven lymph nodes in which Salmonella organisms were detected came from the same animal. Grass-fed, grain-fed, and cull dairy cattle were all found to have detectable Salmonella in lymph nodes. All Salmonella detections occurred during cooler months of the year. No Shiga toxin–producing E. coli were detected. Aerobic microorganisms were detected above the limit of quantification in 3.2% of nodes (median count 2.24 log per node), and E. coli was detected in 0.8% of nodes (median count 3.05 log per node). The low prevalence of Salmonella and low concentration of aerobic microorganisms in Salmonella-positive lymph nodes of Australian cattle at the time of slaughter suggest that the likelihood of lymph nodes contributing significantly to the presence of Salmonella in ground beef is low.


2021 ◽  
Vol 42 (1) ◽  
pp. 155-166
Author(s):  
José Carlos Ribeiro Júnior ◽  
◽  
Isac Gabriel Cunha dos Santos ◽  
Bianca Pereira Dias ◽  
Wescley Faccini Augusto ◽  
...  

The most used methods for the maturation process are vacuum (wet-aged) and dry (dry-aged), which can influence the microbiological quality and safety of meat for consumption. In this study, we aimed to verify the differences in microbiological quality between beef (Longissimus dorsi) that was wet-aged and dry-aged for 30 days, by quantification of indicator microorganism groups and molecular identification of Salmonella, Listeria monocytogenes, and diarrheagenic Escherichia coli. This study verified that the meat matured by the dry-aged method showed significantly lower counts of total coliforms, aerobic mesophiles, psychrotrophs, and molds and yeasts as compared to wet-aged meat. While the Salmonella spp. was not isolated in any beef sample, L. monocytogenes and enteropathogenic E. coli (EPEC), and shiga toxin-producing E. coli (STEC) and enterohemorrhagic E. coli (EHEC) were isolated only from wet-aged beef. Thus, it was concluded that the superficial dehydration of the meat during dry-aged maturation, if carried out correctly and hygienically, confers higher microbiological quality and can reduce the occurrence of microbiological hazards.


2012 ◽  
Vol 10 (3) ◽  
pp. 243 ◽  
Author(s):  
Hanna Lethycia Wolupeck ◽  
Helen Caroline Raksa ◽  
Luciane Silvia Rossa ◽  
Raquel Biasi ◽  
Renata Ernlund Freitas de Macedo

O queijo Minas frescal é um dos mais populares do Brasil, porém o alto teor de umidade associado ao métodode processamento, muitas vezes artesanal, e de armazenamento desse produto o tornam muito perecível.Este trabalho teve como objetivo avaliar e comparar a qualidade microbiológica de queijo Minas frescalcomercializado na cidade de Curitiba (PR) nos anos de 1999 e 2009, verificando a evolução na qualidadehigiênico-sanitária desse produto no período de 10 anos. Foram analisadas 11 marcas comerciais de queijo Minas frescal disponíveis no comércio varejista da cidade de Curitiba, sendo amostradas cinco unidades de cada marca, totalizando 55 amostras. Os queijos foram submetidos à pesquisa de Salmonella spp., contagem de coliformes totais e Escherichia coli, contagem de Staphylococcus coagulase positiva e contagem de aeróbios mesófilos, com resultados expressos em UFC/g. Das 55 amostras de queijo, 41,82% e 78,18% apresentaram contagem de E. coli e de coliformes totais acima do limite permitido, respectivamente. Somente uma amostra (1,82%) do total avaliado mostrou-se em desacordo com os padrões para S. coagulase positiva e uma para Salmonella spp. Ambas as amostras foram adquiridas em 2009. Todas as amostras avaliadas em 2009 apresentaram elevada contagem de aeróbios mesófilos, revelando alta carga microbiana. Comparativamente, os queijos avaliados em 1999 mostraram qualidade microbiológica superior aos queijos avaliados em 2009 (p < 0,05). Destes, 100% apresentaram no mínimo um parâmetro microbiológico em desacordo com a legislação vigente, indicando que a qualidade dos queijos Minas frescal avaliados em 2009 apresentou-se inferior a dos queijos avaliados em 1999.


2020 ◽  
Author(s):  
Ivan Nastasijevic ◽  
John W. Schmidt ◽  
Marija Boskovic ◽  
Milica Glisic ◽  
Norasak Kalchayanand ◽  
...  

ABSTRACTShiga toxin (stx) -producing Escherichia coli (STEC) are foodborne pathogens that have a significant impact on public health, with those possessing the attachment factor intimin (eae) referred to as enterohemorrhagic E. coli (EHEC) associated with life threatening illnesses. Cattle and beef are considered typical sources of STEC, but their presence in pork products is a growing concern. Therefore, carcasses (n=1536) at two U.S. pork processors were sampled once per season at three stages of harvest (post-stunning skins; post-scald carcasses; chilled carcasses) then examined using PCR for stx and eae, aerobic plate count (APC) and Enterobacteriaceae counts (EBC). Skins, post-scald, and chilled carcasses had prevalence of stx (85.3, 17.5, and 5.4%, respectively), with 82.3, 7.8, and 1.7% respectively, having stx and eae present. All stx positive samples were subjected to culture isolation that resulted in 368 STEC and 46 EHEC isolates. The most frequently identified STEC were serogroup O121, O8, and O91(63, 6.7, and 6.0% of total STEC, respectively). The most frequently isolated EHEC was serotype O157:H7 (63% of total EHEC). Results showed that scalding significantly reduced (P < 0.05) carcass APC and EBC by 3.00 and 2.50 log10 CFU/100 cm2 respectively. A seasonal effect was observed with STEC prevalence lower (P < 0.05) in winter. The data from this study shows significant (P < 0.05) reduction in the incidence of STEC (stx) from 85.3% to 5.4% and of EHEC (stx+eae) from 82.3% to 1.7% within slaughter-to-chilling continuum, respectively, and that potential EHEC can be confirmed present throughout using culture isolation.IMPORTANCESeven serogroups of Shiga toxin-producing Escherichia coli (STEC) are responsible for most (>75%) cases of severe illnesses caused by STEC and are considered adulterants of beef. However, some STEC outbreaks have been attributed to pork products although the same E. coli are not considered adulterants in pork because little is known of their prevalence along the pork chain. The significance of the work presented here is that it identifies disease causing STEC, enterohemorrhagic E. coli (EHEC), demonstrating that these same organisms are a food safety hazard in pork as well as beef. The results show that most STEC isolated from pork are not likely to cause severe disease in humans and that processes used in pork harvest, such as scalding, offer a significant control point to reduce contamination. The results will assist the pork processing industry and regulatory agencies to optimize interventions to improve the safety of pork products.


2002 ◽  
Vol 128 (3) ◽  
pp. 357-362 ◽  
Author(s):  
N. FEGAN ◽  
P. DESMARCHELIER

There is very little human disease associated with enterohaemorrhagic Escherichia coli O157 in Australia even though these organisms are present in the animal population. A group of Australian isolates of E. coli O157:H7 and O157:H- from human and animal sources were tested for the presence of virulence markers and compared by XbaI DNA macrorestriction analysis using pulsed-field gel electrophoresis (PFGE). Each of 102 isolates tested contained the gene eae which encodes the E. coli attaching and effacing factor and all but one carried the enterohaemolysin gene, ehxA, found on the EHEC plasmid. The most common Shiga toxin gene carried was stx2c, either alone (16%) or in combination with stx1 (74%) or stx2 (3%). PFGE grouped the isolates based on H serotype and some clusters were source specific. Australian E. coli O157:H7 and H- isolates from human, animal and meat sources carry all the virulence markers associated with EHEC disease in humans therefore other factors must be responsible for the low rates of human infection in Australia.


2016 ◽  
Vol 237 ◽  
pp. 10-16 ◽  
Author(s):  
Rosa Guzman-Hernandez ◽  
Araceli Contreras-Rodriguez ◽  
Rosa Hernandez-Velez ◽  
Iza Perez-Martinez ◽  
Ahide Lopez-Merino ◽  
...  

2016 ◽  
Vol 80 (1) ◽  
pp. 121-126 ◽  
Author(s):  
SUJEET K. MRITUNJAY ◽  
VIPIN KUMAR

ABSTRACT Consumption of ready-to-eat fresh vegetables has increased worldwide, with a consequent increase in outbreaks caused by foodborne pathogens. In the Indian subcontinent, raw fresh vegetables are usually consumed without washing or other decontamination procedures, thereby leading to new food safety threats. In this study, the microbiological quality and pathogenic profile of raw salad vegetables was evaluated through standard protocols. In total, 480 samples (60 each of eight different salad vegetables) of cucumber, tomato, carrot, coriander, cabbage, beetroot, radish, and spinach were collected from different locations in Dhanbad, a city famous for its coal fields and often called the “Coal Capital of India.” The samples were analyzed for total plate count, total coliforms, Escherichia coli, E. coli O157:H7, Listeria monocytogenes, and Salmonella spp. Incidences of pathogens were detected through quantitative PCR subsequent to isolation. Results showed that 46.7% (for total plate counts) and 30% (for total coliforms) of samples were unacceptable for consumption per the Food Safety and Standards Authority of India. Pathogenic microorganisms were detected in 3.7% of total samples. E. coli O157:H7 was detected in three samples of spinach (2) and beetroot (1); L. monocytogenes was detected in 14 samples of spinach (8), tomato (3), cucumber (2), and radish (1); and Salmonella spp. were detected in 16 samples of spinach (7), tomato (3), beetroot (2), cucumber (2), carrot (1), and radish (1). Pathogens were not detected in any of the cabbage and coriander samples.


2017 ◽  
Vol 63 (1) ◽  
pp. 45 ◽  
Author(s):  
A. PEXARA (Α. ΠΕΞΑΡΑ) ◽  
A. S. ANGELIDIS (Α. Σ. ΑΓΓΕΛΙΔΗΣ) ◽  
A. GOVARIS (Α. ΓΚΟΒΑΡΗΣ)

Escherichia coli (E. coli) are Gram negativo, non-sporulating bacteria, which belong to the normal intestinal flora of humans and animals. Shiga toxin-producing E. coli (STFC) arc a group of if. coli that is defined by the capacity to produce toxins called Shiga toxins (Stx). hollowing ingestion of STEC, the significant risk of two serious and potentially life-threatening complications of infection, hemorrhagic colitis and hemolytic uremic syndrome (HUS), makes STHC food poisoning a serious public health problem. Besides Stx, human pathogenic STFC harbor additional virulence factors that are important for their pathogenicity. Although human infection may also be acquired by direct transmission from person to person or by direct contact of humans with animal carriers, the majority of STFC infections are food-borne in origin.The gastrointestinal tract of healthy ruminants seems to be the foremost important reservoir for STFC and ingestion of undercooked beef one of the most likely routes of transmission to humans, Other important food sources include faecally contaminated vegetables and drinking water, The serogroup classification of STHC is based on the somatic (O) and flagellar (H) antigens, and, to date, more than 200 STFC serogroups have been identified, Human STFC infections are, however, associated with a minor subset of 0;H serotypes. Of these, the 0157:H7 or the 0157 :H- serogroups (STFC 0157) are the ones most frequently reported to be associated with food-borne outbreaks. However other non-0157 STFC serogroups such as E. coli 026, 0103, O l l i , 012I, 045 and 0145 have caused several outbreaks in recent years.Two outbreaks of gastroenteritis caused by E. coli 0157:117 were first reported in the US, following the consumption of undercooked hamburgers, in 1982. Since then several outbreaks were reported worldwide. A major E. coli 0157:117 outbreak occurred in Japan and contaminated radish sprouts was identified as the vehicle of infection. More than 6,000 school children were affected, 101 people were hospitalized with lILS and 12 deaths were recorded. The recent outbreak of STFC 0104:114 infection and HUS reported in Germany in the spring of 2011 was one of the largest outbreaks worldwide. As of 27 July, 3 126 cases of STFC infections, 773 cases of HUS including 46 deaths linked to the outbreak in Germany and occurring in the Furopean Union (FU) (including Norway), Outside the FU 8 cases of STFC and 5 cases of HUS, including 1 death have been reported in the USA, Canada and Switzerland, all with recent travel history to Germany.The present review on major STliC food-borne outbreaks recorded worldwide highlights the need for eontrol measures in order to prevent or at least minimize the occurrence of similar events in the future.


2006 ◽  
Vol 72 (3) ◽  
pp. 2254-2259 ◽  
Author(s):  
Lutz Geue ◽  
Thomas Selhorst ◽  
Christina Schnick ◽  
Birgit Mintel ◽  
Franz J. Conraths

ABSTRACT Variations in time and space of a clonal group of Escherichia coli O165:H25 on a cattle farm were monitored. The virulence marker pattern (stx genes, eae gene, hly EHEC gene, katP gene, espP gene, efa gene) suggests that E. coli O165:H25 of bovine origin may represent a risk for human infection.


2002 ◽  
Vol 70 (12) ◽  
pp. 6853-6859 ◽  
Author(s):  
Cheryl L. Tarr ◽  
Teresa M. Large ◽  
Chris L. Moeller ◽  
David W. Lacher ◽  
Phillip I. Tarr ◽  
...  

ABSTRACT Most illnesses caused by Shiga toxin-producing Escherichia coli (STEC) have been attributed to E. coli serotype O157:H7, but non-O157 STEC infections are now increasingly recognized as public health problems worldwide. The O121:H19 serotype is being isolated more frequently from clinical specimens and has been implicated in one waterborne outbreak. We used multilocus virulence gene profiling, a PCR-based assay, to characterize the virulence gene content of 24 isolates of serotype O121:H19 and nonmotile variants. We also performed multilocus enzyme electrophoresis and multilocus sequencing to establish the clonal relatedness of O121 isolates and to elucidate the relationship of O121 to common STEC clones. The 24 isolates were found to represent a single bacterial clone, as there was no allelic variation across 18 enzyme loci among the isolates. The complete nucleotide sequence of the intimin gene differed by four substitutions from that of the epsilon (Int-ε) allele of O103:H2 strain PMK5. The typical O121 virulence gene profile was similar to the profiles of enterohemorrhagic E. coli (EHEC) clones of E. coli: it included a Shiga toxin 2 gene (stx 2), two genes on the EHEC plasmid (toxB and ehxA), and the gene encoding intimin (eae). Despite the similarities, putative virulence genes distributed on O islands—large chromosomal DNA segments present in the O157:H7 genome—were useful for discriminating among STEC serotypes and the O121:H19 clone had a composite profile that was distinct from the profiles of the other major EHEC clones of pathogenic E. coli. On the basis of sequencing analysis with 13 housekeeping genes, the O121:H19 clone did not fall into any of the four classical EHEC and enteropathogenic E. coli groups but instead was closely related to two eae-negative STEC strains.


Sign in / Sign up

Export Citation Format

Share Document