Effect of Citrus reticulata Blanco Essential Oil on Cryptolestes ferrugineus (Stephens) Adults

2017 ◽  
Vol 80 (12) ◽  
pp. 2090-2093 ◽  
Author(s):  
Jianhua Lü

ABSTRACT The rusty grain beetle, Cryptolestes ferrugineus (Stephens), is a major insect pest of stored products worldwide. In an effort to manage populations of C. ferrugineus in stored grains, the essential oil from Citrus reticulata Blanco peel was prepared by the Soxhlet method with anhydrous diethyl ether, and its contact activity, repellent activity, and fumigant activity were investigated against C. ferrugineus adults. C. reticulata peel essential oil had potent contact, repellent, and fumigant activity against C. ferrugineus adults, with activity significantly increasing with increasing exposure dosage during the same exposure time. Percent repellency values achieved >80.0% after 60 h of exposure. For contact toxicity, the corrected mortality of C. ferrugineus adults reached >99.0% after 48 h of exposure at the dosage of 2.0 μL/cm2. For fumigant toxicity, the corrected mortality of C. ferrugineus adults reached 89.0 and 100.0% at the dosages of 40 and 80 μL/L of air, respectively. These results suggest that the C. reticulata peel essential oil has strong potential for managing populations of C. ferrugineus in practice.

Foods ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 345
Author(s):  
Jun-Yu Liang ◽  
Jie Xu ◽  
Ying-Ying Yang ◽  
Ya-Zhou Shao ◽  
Feng Zhou ◽  
...  

Investigations have indicated that storage pests pose a great threat to global food security by damaging food crops and other food products derived from plants. Essential oils are proven to have significant effects on a large number of stored grain insects. This study evaluated the contact toxicity and fumigant activity of the essential oil extract from the aerial parts of Elsholtzia ciliata and its two major biochemical components against adults and larvae of the food storage pest beetle Tribolium castaneum. Gas chromatography–mass spectrometry analysis revealed 16 different components derived from the essential oil of E. ciliata, which included carvone (31.63%), limonene (22.05%), and α-caryophyllene (15.47%). Contact toxicity assay showed that the essential oil extract exhibited a microgram-level of killing activity against T. castaneum adults (lethal dose 50 (LD50) = 7.79 μg/adult) and larvae (LD50 = 24.87 μg/larva). Fumigant toxicity assay showed LD50 of 11.61 mg/L air for adults and 8.73 mg/L air for larvae. Carvone and limonene also exhibited various levels of bioactivity. A binary mixture (2:6) of carvone and limonene displayed obvious contact toxicity against T. castaneum adults (LD50 = 10.84 μg/adult) and larvae (LD50 = 30.62 μg/larva). Furthermore, carvone and limonene exhibited synergistic fumigant activity against T. castaneum larvae at a 1:7 ratio. Altogether, our results suggest that E. ciliata essential oil and its two monomers have a potential application value to eliminate T. castaneum.


Insects ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 23
Author(s):  
Md Munir Mostafiz ◽  
Errol Hassan ◽  
Rajendra Acharya ◽  
Jae-Kyoung Shim ◽  
Kyeong-Yeoll Lee

The Indian meal moth, Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae), is an insect pest that commonly affects stored and postharvest agricultural products. For the control of insect pests and mites, methyl benzoate (MBe) is lethal as a fumigant and also causes contact toxicity; although it has already been established as a food-safe natural product, the fumigation toxicity of MBe has yet to be demonstrated in P. interpunctella. Herein, we evaluated MBe as a potential fumigant for controlling adults of P. interpunctella in two bioassays. Compared to the monoterpenes examined under laboratory conditions, MBe demonstrated high fumigant activity using a 1-L glass bottle at 1 μL/L air within 4 h of exposure. The median lethal concentration (LC50) of MBe was 0.1 μL/L air; the median lethal time (LT50) of MBe at 0.1, 0.3, 0.5, and 1 μL/L air was 3.8, 3.3, 2.8, and 2.0 h, respectively. Compared with commercially available monoterpene compounds used in pest control, MBe showed the highest fumigant toxicity (toxicity order as follows): MBe > citronellal > linalool > 1,8 cineole > limonene. Moreover, in a larger space assay, MBe caused 100% mortality of P. interpunctella at 0.01 μL/cm3 of air after 24 h of exposure. Therefore, MBe can be recommended for use in food security programs as an ecofriendly alternative fumigant. Specifically, it provides another management tool for curtailing the loss of stored food commodities due to P. interpunctella infestation.


2011 ◽  
Vol 6 (6) ◽  
pp. 1934578X1100600 ◽  
Author(s):  
Lilian R. Descamps ◽  
Carolina Sánchez Chopa ◽  
Adriana A. Ferrero

Essential oils extracted from leaves and fruits of Schinus areira (Anacardiaceae) were tested for their repellent, toxic and feeding deterrent properties against Tribolium castaneum (Coleoptera: Tenebrionidae) larvae and adults. A topical application assay was employed for the contact toxicity study and filter paper impregnation for the fumigant assay. A treated diet was also used to evaluate the repellent activity and a flour disk bioassay for the feeding deterrent action and nutritional index alteration. The essential oil of the leaves contained mainly monoterpenoids, with α-phellandrene, 3-carene and camphene predominant, whereas that from the fruits contained mainly α-phellandrene, 3-carene and β-myrcene. The leaf essential oil showed repellent effects, whereas that from the fruit was an attractant. Both oils produced mortality against larvae in topical and fumigant bioassays, but fumigant toxicity was not found against adults. Moreover, both essential oils produced some alterations in nutritional index. These results show that the essential oils from S. areira could be applicable to the management of populations of Tribolium castaneum.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Asgar Ebadollahi ◽  
Jalal Jalali Sendi ◽  
Alireza Aliakbar ◽  
Jabraeil Razmjou

Utilization of synthetic acaricides causes negative side-effects on nontarget organisms and environment and most of the mite species such as two spotted spider mite,Tetranychus urticaeKoch, are becoming resistant to these chemicals. In the present study, essential oils of fennel,Foeniculum vulgareMill., and lavender,Lavandula angustifoliaMiller, were hydrodistilled using Clevenger apparatus and chemical composition of these oils was analyzed by GC-MS. Anethole (46.73%), limonene (13.65%), andα-fenchone (8.27%) in the fennel essential oil and linalool (28.63%), 1,8-cineole (18.65%), and 1-borneol (15.94%) in the lavender essential oil were found as main components. Contact and fumigant toxicity of essential oils was assessed against adult females ofT. urticaeafter 24 h exposure time. The essential oils revealed strong toxicity in both contact and fumigant bioassays and the activity dependeds on essential oil concentrations. Lethal concentration 50% for the population of mite (LC50) was found as 0.557% (0.445–0.716) and 0.792% (0.598–1.091) in the contact toxicity and 1.876 μL/L air (1.786–1.982) and 1.971 μL/L air (1.628–2.478) in the fumigant toxicity for fennel and lavender oils, respectively. Results indicated thatF. vulgareandL. angustifoliaessential oils might be useful for managing of two spotted spider mite,T. urticae.


2015 ◽  
Vol 78 (4) ◽  
pp. 772-777 ◽  
Author(s):  
XIN CHAO LIU ◽  
ZHI LONG LIU

Water-distilled essential oil from Illicium henryi (Illiciaceae) root bark was analyzed by gas chromatography–mass spectrometry. Thirty-four compounds, accounting for 97.86% of the total oil, were identified. The main components of the essential oil of I. henryi root bark were safrole (46.12%), myristicin (20.39%), and 1,8-cineole (6.17%), followed by α-cadinol (3.784%) and linalool (3.22%). The essential oil had higher levels of phenylpropanoids (66.89%) than of monoterpenoids (14.83%) and sesquiternoids (16.14%). Three constituents were isolated from the oil based on bioactivity fractionation. The essential oil possessed fumigant toxicity against booklice (Liposcelis bostrychophila), with a 50% lethal concentration (LC50) of 380.39 μg/liter of air, while the two isolated constituents myristicin and safrole had LC50s of 121.95 and 322.54 μg/liter, respectively. Another constituent, 1,8-cineole, showed weaker toxicity, with an LC50 of 1,120.43 μg/liter. The essential oil also exhibited contact toxicity against L. bostrychophila, with an LC50 of 96.83 μg/cm2. Myristicin (LC50, 18.74 μg/cm2) and safrole (LC50, 69.28 μg/cm2) exhibited stronger acute toxicity than 1,8-cineole (LC50, 1,049.41 μg/cm2) against the booklice. The results indicated that the essential oil and its constituent compounds have potential for development into natural insecticides for control of psocids in stored grains.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Xin Chao Liu ◽  
Xianghong Hao ◽  
Ligang Zhou ◽  
Zhi Long Liu

The roots ofEchinops latifoliusTausch (Asteraceae) have been used in the traditional medicine. However, no report on chemical composition and insecticidal activities of the essential oil of this plant exists. The aim of this research was to determine chemical composition and insecticidal activities of the essential oil ofE. latifoliusaerial parts against maize weevils (Sitophilus zeamaisMotschulsky) for the first time. Essential oil ofE. latifoliusaerial parts at flowering stage was obtained by hydrodistillation and analyzed by gas chromatography-mass spectrometry (GC-MS). A total of 35 components of the essential oil ofE. latifoliusaerial parts were identified. The major compounds in the essential oil were 1,8-cineole (19.63%), (Z)-β-ocimene (18.44%), andβ-pinene (15.56%) followed byβ-myrcene (4.75%) and carvone (4.39%). The essential oil ofE. latifoliuspossessed contact toxicity againstS. zeamaiswith an LD50value of 36.40 µg/adult. The essential oil also exhibited fumigant toxicity againstS. zeamaiswith an LC50value of 9.98 mg/L. The study indicates that the essential oil ofE. latifoliusaerial parts has a potential for development into a natural insecticide/fumigant for control of insects in stored grains.


2015 ◽  
Vol 49 (3) ◽  
pp. 181-184
Author(s):  
Z Parveen ◽  
S Siddique ◽  
Z Ali

The hydro-distilled essential oil of Citrus reticulata Blanco var. kinnow was analyzed by Gas chromatography-mass spectrometry (GC-MS). Five constituents out of fifteen constituents were identified from seeded C. reticulata oil representing 74.66% of the oil. The major constituent of the oil was ?- phellandrene (62.00%). ?-pinene(6.53%), ?-myrcene(2.81%), limonene(2.81%) and caryophyllene(0.51%) were present in considerable amount. From the low seeded C. reticulata oil, six components out of seventeen compounds were identified constituting 54.74% of the oil and the main component was ?-phellandrene (37.35%). ?-pinene(2.79%), ?-pinene(3.26%), ?-myrcene(4.16%), limonene(5.77%), caryophyllene(1.41%) were present in considerable amount. DOI: http://dx.doi.org/10.3329/bjsir.v49i3.22132 Bangladesh J. Sci. Ind. Res. 49(3), 181-184, 2014


Sign in / Sign up

Export Citation Format

Share Document