liposcelis bostrychophila
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 5)

H-INDEX

20
(FIVE YEARS 0)

Insects ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 839
Author(s):  
Ze Qing Miao ◽  
Yan Qing Tu ◽  
Peng Yu Guo ◽  
Wang He ◽  
Tian Xing Jing ◽  
...  

Psocids are a new risk for global food security and safety because they are significant worldwide pests of stored products. Among these psocids, Liposcelis bostrychophila has developed high levels of resistance or tolerance to heat treatment in grain storage systems, and thus has led to investigation of molecular mechanisms underlying heat tolerance in this pest. In this study, the time-related effects of thermal stress treatments at relatively high temperatures on the activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), peroxidases (POD), glutathione-S-transferases (GST) and malondialdehyde (MDA), of L. bostrychophila were determined. Thermal stress resulted that L. bostrychophila had a significantly higher MDA concentration at 42.5 °C, which indicated that the heat stress increased lipid peroxidation (LPO) contents and oxidative stress in this psocid pest. Heat stress also resulted in significant elevation of SOD, CAT and GST activities but decreased POD activity. Our data indicates that different antioxidant enzymes contribute to defense mechanisms, counteracting oxidative damage in varying levels. POD play minor roles in scavenging deleterious LPO, while enhanced SOD, CAT and GST activities in response to thermal stress likely play a more important role against oxidative damage. Here, we firstly identified five LbHsps (four LbHsp70s and one LbHsp110) from psocids, and most of these LbHsps (except LbHsp70-1) are highly expressed at fourth instar nymph and adults, and LbHsp70-1 likely presents as a cognate form of HSP due to its non-significant changes of expression. Most LbHsp70s (except LbHsp70-4) are significantly induced at moderate high temperatures (<40 °C) and decreased at extreme high temperatures (40–45 °C), but LbHsp110-1 can be significantly induced at all high temperatures. Results of this study suggest that the LbHsp70s and LbHsp110 genes are involved in tolerance to thermal stress in L. bostrychophila, and antioxidant enzymes and heat shock proteins may be coordinately involved in the tolerance to thermal stress in psocids.


2020 ◽  
Vol 88 ◽  
pp. 101659
Author(s):  
Makoto Yoshinami ◽  
Rikuya Machida ◽  
Naoki Kobayashi ◽  
Yoshiko Sugita-Konishi ◽  
Katsunori Furuhata

2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Shan-Shan Guo ◽  
Yang Wang ◽  
Zhen-Yang Chen ◽  
Zhe Zhang ◽  
Ju-Qin Cao ◽  
...  

To develop natural product resources from the Clausena genus (Rutaceae), the essential oils (EOs) from four Clausena plants (Clausena excavata, C. lansium, C. emarginata, and C. dunniana) were analyzed by GC-MS. Their lethal (contact toxicity) and sublethal effects (repellency) against Liposcelis bostrychophila (LB) adults were also evaluated. Santalene sesquiterpene was the precursor substance of santalol, a valuable perfumery. It was found that plenty of α-santalol (31.7%) and α-santalane (19.5%) contained in C. lansium from Guangxi Province and α-santalene (1.5%) existed in C. emarginata. Contact toxicity of the four EOs was observed, especially C. dunniana (LD50 = 37.26 µg/cm2). Santalol (LD50 = 30.26 µg/cm2) and estragole (LD50 = 30.22 µg/cm2) were the two most toxic compounds. In repellency assays, C. excavate, C. lansium, and C. emarginata exhibited repellent effect at the dose of 63.17 nL/cm2 2 h after exposure (percentage repellencies were 100%, 98%, and 96%, respectively). Four Clausena EOs and santalol had an excellent potential for application in the management of LB. Clausena plants could be further developed to find more resources of natural products.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2131 ◽  
Author(s):  
Yang Wang ◽  
Shanshan Guo ◽  
Juqin Cao ◽  
Xue Pang ◽  
Zhe Zhang ◽  
...  

Toxic and repellent effects of the essential oil from Asarum heterotropoides Fr. Schmidt var. mandshuricum (Maxim.) Kitag. were evaluated against Lasioderma serricorne and Liposcelis bostrychophila. The essential oils (EOs) from roots (ER) and leaves (EL) of A. heterotropoides were obtained separately by hydrodistillation and characterized by gas chromatography-mass spectrometry (GC-MS) analysis. Major components of ER and EL included methyleugenol, safrole, and 3,5-dimethoxytoluene. Both ER and EL of A. heterotropoides showed certain toxicity and repellency against L. serricorne and L. bostrychophila. 3,5-Dimethoxytoluene, methyleugenol, and safrole were strongly toxic via fumigation to L. serricorne (LC50 = 4.99, 10.82, and 18.93 mg/L air, respectively). Safrole and 3,5-dimethoxytoluene possessed significant fumigant toxicity against L. bostrychophila (LC50 = 0.83 and 0.91 mg/L air, respectively). The three compounds all exhibited potent contact toxicity against the two insect species. Here, the EL of A. heterotropoides was confirmed to have certain toxicity and repellency against stored product insects, providing a novel idea for the comprehensive use of plant resources.


2018 ◽  
Vol 8 (3) ◽  
pp. 1039-1047 ◽  
Author(s):  
Shiqian Feng ◽  
Qianqian Yang ◽  
Hu Li ◽  
Fan Song ◽  
Václav Stejskal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document