Enzymatic Inactivation of Pathogenic and Nonpathogenic Bacteria in Biofilms in Combination with Chlorine

2019 ◽  
Vol 82 (4) ◽  
pp. 605-614 ◽  
Author(s):  
MIN-JEONG KIM ◽  
EUN SEOB LIM ◽  
JOO-SUNG KIM

ABSTRACT This study investigated the effects of enzyme application on biofilms of bacterial isolates from a cafeteria kitchen and foodborne pathogens and the susceptibility of Salmonella biofilms to proteinase K combined with chlorine treatment. For four isolates from a cafeteria kitchen (Acinetobacter, Enterobacter, and Kocuria) and six strains of foodborne pathogens (Salmonella enterica, Staphylococcus aureus, and Vibrio parahaemolyticus), the inhibitory effect of enzymes on biofilm formation at 25°C for 24 h or the degradative efficacy of enzymes on 24-h mature biofilm at 37°C for 1 h in tryptic soy broth (TSB) was examined in a polystyrene microtiter plate. The effect of enzymes was also evaluated on a subset of these strains in 20 times diluted TSB (1/20 TSB) at 25°C. The working concentrations of five enzymes were 1 U/100 μL for α-amylase, amyloglucosidase, cellulase, and DNase and 1 milli-Anson unit/100 μL for proteinase K. In addition, 24-h mature Salmonella Typhimurium biofilm on a stainless steel coupon was treated with proteinase K for 1 h at 25°C followed by 20 ppm of chlorine for 1 min at 25°C. The results showed that certain enzymes inhibited biofilm formation by the kitchen-originated bacteria; however, the enzymatic effect was diminished on the mature biofilms. Biofilm formation of V. parahaemolyticus was suppressed by all tested enzymes, whereas the mature biofilm was degraded by α-amylase, DNase I, and proteinase K. Proteinase K was effective in controlling Salmonella biofilms, whereas a strain-dependent variation was observed in S. aureus biofilms. In 1/20 TSB, Enterobacter cancerogenus and Kocuria varians were more susceptible to certain enzymes during biofilm formation than those in TSB, whereas the enzymatic effect was much decreased on 24-h mature biofilms, regardless of nutrient conditions. Furthermore, synergistic inactivation of Salmonella Typhimurium in biofilms was observed in the combined treatment of proteinase K followed by chlorine. Live/Dead assays also revealed a decrease in density and loss of membrane integrity in Salmonella Typhimurium biofilms exposed to the combined treatment. Therefore, certain enzymes can control biofilms of isolates residing in a cafeteria kitchen and foodborne pathogens. This study demonstrates the potential of enzymes for the sanitation of food processing environments and of proteinase K combined with chlorine to control Salmonella biofilms on food contact surfaces.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Wen Si Hu ◽  
Da Min Nam ◽  
Joo-Sung Kim ◽  
Ok Kyung Koo

AbstractBacteria can form biofilms, complex microbial communities protected from environmental stress, on food contact surfaces. Brassicaceae plant has been shown to contain bioactive compounds with antimicrobial activities. The objective of this study was to evaluate the synergistic effects of Brassicaceae species and proteinase K against E. coli O157:H7 biofilm. We determined the minimum biofilm inhibitory concentration, the fractional inhibitory concentration indexes, and the synergistic inhibitory effect of Raphanus sativus var. longipinnatus, R. sativus, and Brassica oleracea var. acephala extracts with proteinase K on E. coli O157:H7. The biofilm showed a 49% reduction with 2 mg/mL R. sativus. The combination of proteinase K 25 µg/mL significantly increased the effect of 2 mg/mL R. sativus var. longipinnatus and the combined treatment yielded up to 2.68 log reduction on stainless steel coupons. The results showed that the combination of R. sativus var. longipinnatus extract and proteinase K could serve as an anti-biofilm agent with synergistic effects for inhibiting E. coli O157:H7 biofilm on stainless steel surfaces.


2020 ◽  
Vol 21 (3) ◽  
pp. 1025 ◽  
Author(s):  
Tong-Xin Niu ◽  
Xiao-Ning Wang ◽  
Hong-Yan Wu ◽  
Jing-Ran Bi ◽  
Hong-Shun Hao ◽  
...  

Salmonella typhimurium (S. typhimurium) is a common foodborne pathogen that not only causes diseases and contaminates food, but also causes considerable economic losses. Therefore, it is necessary to find effective and feasible methods to control S. typhimurium. In this study, changes in S. typhimurium after treatment with benzyl isothiocyanate (BITC) were detected by transcriptomics to explore the antibacterial effect of BITC at subinhibitory concentration. The results showed that, in contrast to the control group (SC), the BITC-treated group (SQ_BITC) had 197 differentially expressed genes (DEGs), of which 115 were downregulated and 82 were upregulated. We screened out eight significantly downregulated virulence-related genes and verified gene expression by quantitative Real-time Polymerase Chain Reaction (qRT-PCR). We also selected motility and biofilm formation to observe the effects of BITC on the other virulence related factors of S. typhimurium. The results showed that both swimming and swarming were significantly inhibited. BITC also had a significant inhibitory effect on biofilm formation, and showed an effect on bacterial morphology. These results will be helpful for understanding the mechanism of the antibacterial action of BITC against S. typhimurium and other foodborne pathogens.


2020 ◽  
Vol 10 (4) ◽  
pp. 1364
Author(s):  
Krzysztof Skowron ◽  
Karolina Jadwiga Skowron ◽  
Justyna Bauza-Kaszewska ◽  
Ewa Wałecka-Zacharska ◽  
Joanna Kwiecińska-Piróg ◽  
...  

The decontamination of food contact surfaces is a major problem for the food industry. The radiant catalytic ionization (RCI) method, based on the ionization process, may be an alternative for conventional decontamination procedures. The advantage of this technique is the possibility of its application to household refrigerating appliances and industrial cold rooms. This study aimed to assess the effect of RCI on the reduction of Campylobacter jejuni, Listeria monocytogenes, and Salmonella Enteritidis from the biofilms formed on a glass surface under refrigeration conditions. Bacterial biofilms were exposed to RCI for 24 h and after 12 (variant I) and 72 h (variant II) of the glass surface contamination. In the last variant (III), the contaminated meat was placed on the glass surface in the refrigerator and subjected to RCI treatment for 72 h. The significantly highest values of absolute reduction efficiency coefficient E were found for the bacterial attachment stage of biofilm formation (variant I). The research proves the efficiency of the RCI method in the reduction of bacteria number from a glass surface.


2013 ◽  
Vol 76 (4) ◽  
pp. 662-667 ◽  
Author(s):  
M. CORCORAN ◽  
D. MORRIS ◽  
N. DE LAPPE ◽  
J. O'CONNOR ◽  
P. LALOR ◽  
...  

Foodborne pathogens can attach to, and survive on, food contact surfaces for long periods by forming a biofilm. Salmonella enterica is the second most common cause of foodborne illness in Ireland. The ability of S. enterica to form a biofilm could contribute to its persistence in food production areas, leading to cross-contamination of products and surfaces. Arising from a large foodborne outbreak of S. enterica serovar Agona associated with a food manufacturing environment, a hypothesis was formulated that the associated Salmonella Agona strain had an enhanced ability to form a biofilm relative to other S. enterica. To investigate this hypothesis, 12 strains of S. enterica, encompassing three S. enterica serovars, were assessed for the ability to form a biofilm on multiple food contact surfaces. All isolates formed a biofilm on the contact surfaces, and there was no consistent trend for the Salmonella Agona outbreak strain to produce a denser biofilm compared with other strains of Salmonella Agona or Salmonella Typhimurium. However, Salmonella Enteritidis biofilm was considerably less dense than Salmonella Typhimurium and Salmonella Agona biofilms. Biofilm density was greater on tile than on concrete, polycarbonate, stainless steel, or glass.


2019 ◽  
Vol 10 (1) ◽  
pp. 124-128 ◽  
Author(s):  
O. V. Knysh

Comprehensive study of the biological activity of structural components and metabolites of “beneficial” microorganisms opens the prospects of efficient and rational use of their biotechnological potential in the correction of microecological and related disorders. The study tested proliferative activity and biofilm formation by Bifidobacterium bifidum probiotic strain under the influence of cell-free extracts containing structural components and metabolites of the probiotic strains of B. bifidum and Lactobacillus reuteri. Cell-free extracts were obtained by disintegrating suspensions of probiotic cells by cyclic freezing-thawing, cultivating probiotic microorganisms in their own disintegrates and subsequent filtration of the obtained disintegrates and cultures. The proliferative activity and biofilm formation of the probiotic test culture were studied by spectrophotometric microtiter plate method with 10%vol, 30%vol and 50%vol content of cell-free extracts in the cultivation medium. All investigated extracts showed a significant concentration-dependent stimulatory effect on the proliferative activity of B. bifidum. According to the degree of stimulatory effect on the B. bifidum proliferation, cell-free extracts arranged in ascending order: MLG (filtrate of L. reuteri culture, grown in L. reuteri disintegrate supplemented with 0.8 M glycerol and 0.4 M glucose) < MB (filtrate of В. bifidum culture, grown in В. bifidum disintegrate) < B (filtrate of В. bifidum disintegrate) < ML (filtrate of L. reuteri culture, grown in L. reuteri disintegrate) < L (filtrate of L. reuteri disintegrate). With the same content in the culture medium, filtrates of disintegrates had a more pronounced stimulatory effect than filtrates of cultures grown in their own disintegrates. Cell-free extracts from L. reuteri (L and ML) exerted a more pronounced stimulatory effect than cell-free extracts from B. bifidum. Not all studied cell-free extracts stimulated the biofilm formation by B. bifidum. The effect of cell-free extracts on this process depended on their type and concentration. Extract L had a predominantly inhibitory effect on biofilm formation by B. bifidum. The most pronounced stimulatory effect on biofilm formation by B. bifidum came from extract MLG. ML, B and MB extracts stimulated this process approximately equally. The detection of significant bifidogenic effect of the studied cell-free extracts may contribute to their pharmaceutical applications. Cell-free extracts can be used as metabiotics or prebiotics for increasing the survival of the injected probiotic, facilitating its inoculation in the gastrointestinal tract when used together. The obtained data encourage further careful study of the biochemical composition of cell-free extracts and efforts to clarify the mechanism of their action.


2021 ◽  
Vol 854 (1) ◽  
pp. 012015
Author(s):  
I Cirkovic

Abstract Biofilms are complex microbial communities formed by one and more species embedded in an extracellular polymeric matrix of different compositions depending on the attached microbial species and the type of food manufacturing. Attachment of bacteria to food contact surfaces and the subsequent formation of biofilms can cause equipment damage, food spoilage and even human diseases. Foodborne diseases associated with biofilms in the food industry can be intoxications or infections and can have great impact on human health. Foodborne pathogens that express capacity for biofilm formation under different conditions in the food industry, and that are in the scope of our investigations, are Salmonella (which, on contaminating a food pipeline biofilm, could induce massive outbreaks and even death in children and elderly) and Listeria monocytogenes (a ubiquitous bacterium that can cause abortion in pregnant women and other serious complications in children and the elderly).


Author(s):  
Swathy Krishna Jayalekshmi ◽  
Arya Radhakrishnan Krishna ◽  
Trisha Mary Pandipilly Antony ◽  
Suganthi Ramasamy

Foodborne pathogens are the main threat and cause of food poisoning. The majority of food infections have been related to the biofilm formation of foodborne pathogens in the food industry. Shewanella putrefaciens (KX355803, GRD 03), a Gram-negative pathogen isolated from mackerel fish, was identified and recognized as a food spoilage bacterium and a strong biofilm producer. The adhesion or attachment ability of Shewanella putrefaciens was determined on steel, plastic, glass, PVC and wood. NB (Nutrient broth), LB (Luria-Bertani broth), TSB (Tryptic soy broth) and BHI (Brain heart infusion broth) were enriched with glucose and shows optimum for bacterial adhesion. In the microtiter plate method (MTP), the strong attachment was observed at 48 and 72 hours of incubation and significant differences were obtained at p < 0.05. As the incubation period increases, the OD value (Optical density) of samples also increase. Biofilm formation is the major cause cross-contamination, and shows resistance to certain disinfectants, which leads to environmental stress tolerance. This study suggested with optimum biofilm production of isolate from fish by using glucose enriched media on different substrates, also comparing different growth media provide a detailed idea about biofilm-forming ability at different incubation time intervals.


Author(s):  
Navid Saidi ◽  
Parviz Owlia ◽  
Seyed Mahmoud Amin Marashi ◽  
Horieh Saderi

Background and Objectives: Staphylococcus aureus, as an opportunistic pathogen, is the cause of a variety of diseases from mild skin infections to severe invasive infections and food poisoning. Increasing antibiotic resistance in S. aureus isolates has become a major threat to public health. The use of compounds produced by probiotics can be a solution to this problem. Thus, the purpose of this study was to investigate the effect of Saccharomyces cerevisiae on some virulence factors (biofilm, α-hemolysin, and enterotoxin A) of S. aureus. Materials and Methods: Supernatant and lysate extracts were prepared from S. cerevisiae S3 culture. Sub-MIC concen- trations of both extracts were separately applied to S. aureus ATCC 29213 (methicillin-sensitive S. aureus; MSSA) and S. aureus ATCC 33591 (methicillin-resistant S. aureus; MRSA) strains. Biofilm formation of these strains was measured by microtiter plate assay and expression level of α-hemolysin and enterotoxin A genes (hla and sea, respectively) using real-time PCR technique. Results: The supernatant extract has reduced both biofilm formation and expression of sea and hla genes, while lysate ex- tract had only anti-biofilm effects. The MRSA strain showed more susceptibility to yeast extracts than MSSA strain in all tests. Conclusion: The present study exhibited favorable antagonistic effects of S. cerevisiae S3, as a probiotic yeast, on MSSA and MRSA strains. Based on the findings of this study, the compounds produced by this yeast can be used to control S. aureus infections; however, further similar studies should be conducted to confirm the findings of the present study.


2018 ◽  
Vol 70 (1) ◽  
Author(s):  
Joseph T. Mannozzi ◽  
Victoria J. Filbert ◽  
William J. Mackay ◽  
David E. Fulford ◽  
Craig W. Steele

Abstract Escherichia coli, Listeria spp. and Salmonella typhimurium are common food pathogens and responsible for frequent and widespread outbreaks of foodborne illness annually. This study examines the potential of radiant catalytic ionization (RCI) as a food decontamination technology through its reduction of inoculations of these bacteria on representative food items (apples, cantaloupes, and spinach). RCI exposure resulted in ≥99% reduction in the recovery of these bacteria within a 90-min exposure, with two exceptions (E. coli and S. typhimurium inoculated on cantaloupe: 94% reduction; 88% reduction, respectively). When E. coli, L. innocua and S. typhimurium were inoculated onto apple slices, the percentages remaining after exposure to RCI for 0, 30, 60 and 90 min were: 100, 2, 0, 0; 100, 30, 9, 0.01; and 100, 21, 0.004, 0.02, respectively. When E. coli, L. innocua and S. typhimurium were inoculated onto the rough outer skin of cantaloupes, the percentages remaining after exposure to RCI for 0, 30, 60 and 90 min were: 100, 19, 15, 6; 100, 9, 10, 1; and 100, 24, 22, 12, respectively. When E. coli, L. innocua and S. typhimurium were inoculated onto spinach leaves, the percentages remaining after exposure to RCI for 0, 30, 60 and 90 min were: 100, 16, 0.001, 0.002; 100, 19, 11, 0.005; and 100, 0.007, 0, 0, respectively (SE = ± 0.1 maximum). These results indicate that RCI is an effective technology for reducing foodborne pathogens.


Sign in / Sign up

Export Citation Format

Share Document