Occurrence of Virulence Factors and Antibiotic and Heavy Metal Resistance in Vibrio parahaemolyticus Isolated from Pacific Mackerel at Markets in Zhejiang, China

2020 ◽  
Vol 83 (8) ◽  
pp. 1411-1419
Author(s):  
JIEHONG FANG ◽  
HUI CHENG ◽  
TING YU ◽  
HAN JIANG

ABSTRACT Vibrio parahaemolyticus is a widespread bacterium in the marine environment and is one of the leading causes of food-derived bacterial poisoning in humans worldwide. The main objective of this study was to determine the prevalence, virulence factors, and antibiotic and heavy metal resistance profiles of V. parahaemolyticus in Pacific mackerel (Pneumatophorus japonicus) from different markets in Zhejiang Province, People's Republic of China. In total, 112 (31.11%) V. parahaemolyticus isolates were identified from 360 Pacific mackerel samples, with an extremely low occurrence of the virulence genes trh (1.79%, 2 of 112) and tdh (0%, 0 of 112). Antibiotic resistance testing revealed that most isolates showed resistance to ampicillin (96.43%, 108 of 112) and streptomycin (90.18%, 101 of 112), whereas all strains were sensitive to kanamycin, florfenicol, cefamandole, and trimethoprim-sulfamethoxazole. Furthermore, 46.43% (52 of 112) of isolates, which had 12 different phenotypes, were classified as multidrug resistant. In addition, the multiple antibiotic resistance index values of isolates were between 0.05 and 0.63, and the maximum multiple antibiotic resistance index was attributed to two isolates that exhibited resistance to 12 antibiotics. Heavy metal resistance patterns were similar among the six different markets. The majority of isolates showed resistance to Cd2+ (78.57%) and Pb2+ (51.79%), and fewer were resistant to Cu2+ (37.50%), Zn2+ (25.00%), Co2+ (9.82%), Ni2+ (6.25%), and Mn2+ (4.46%). No isolates were resistant to Cr3+. In total, 22.32% (25 of 112) of strains were multiheavy metal resistant. Furthermore, multidrug resistance and multiheavy metal resistance were found to be positively correlated in the V. parahaemolyticus strains by using Pearson's correlation analysis (P = 0.008; R = 0.925). This information will contribute to the monitoring of variations in the antibiotic and heavy metal resistance profiles of V. parahaemolyticus strains from seafood and provide insight into the appropriate use of antibiotics and the safe consumption of seafood. HIGHLIGHTS

2018 ◽  
Vol 24 (6) ◽  
pp. 782-791 ◽  
Author(s):  
Wenwen Deng ◽  
Yuan Quan ◽  
Shengzhi Yang ◽  
Lijuan Guo ◽  
Xiuli Zhang ◽  
...  

2016 ◽  
Vol 23 (15) ◽  
pp. 15033-15040 ◽  
Author(s):  
Yu He ◽  
Lanlan Jin ◽  
Fengjiao Sun ◽  
Qiongxia Hu ◽  
Lanming Chen

Our Nature ◽  
1970 ◽  
Vol 7 (1) ◽  
pp. 203-206 ◽  
Author(s):  
M. Sharma ◽  
H.P. Thapaliya

Heavy metal resistant bacterial isolates from the effluent in a garment industry site were examined to assess their resistance towards multiple antibiotics. Heavy metal resistance property has been found to enhance the antibiotic resistance ability of microorganisms. Isolation of the heavy metal resistant organisms was done in media containing salts of heavy metals. Organisms were identified belonging to the genera Bacillus, Corynebacterium, Lactobacillus, Aeromonas and Enterococcus. Bacterial isolates were tested for their sensitivity to seven common antibiotics (penicillin, tetracycline, erythromycin, chloramphenicol, gentamicin, vancomycin and cotrimoxazole) using Kirby-Bauer technique. Isolates were found to be resistant to multiple antibiotics but all the isolates were sensitive to gentamicin. The data of our study indicates that metal pollution of the environment is the cause of heavy metal resistance isolates and hence antibiotic resistance.Key words: Heavy metal, effluent, antibiotics, resistance, Bacteria, pollution.DOI: 10.3126/on.v7i1.2572Our Nature (2009) 7:203-206  


2015 ◽  
Vol 59 (9) ◽  
pp. 5788-5792 ◽  
Author(s):  
Huping Xue ◽  
Zhaowei Wu ◽  
Longping Li ◽  
Fan Li ◽  
Yiqing Wang ◽  
...  

ABSTRACTThe structure of a composite staphylococcal cassette chromosome (SCC) carried by a methicillin-resistantStaphylococcus haemolyticus(NW19A) isolated from a bovine milk sample was analyzed. The formation of the circular forms of both single SCC elements and composite SCC elements was detected in NW19A. Twenty heavy metal and antibiotic resistance-related genes coexisted in this composite SCC, suggesting that these genes might be coselected under environmental pressure. Themecgene complex in NW19A, designated type C3, is different from classic C1 or C2 gene complexes structurally and likely evolves differently. Furthermore, results from alignment of the SCC composite island of NW19A with 50 related sequences from different staphylococcal strains provided additional evidence to support the notion that coagulase-negative staphylococci (CoNS) are the original host of heavy metal resistance genes among staphylococci. Given that a SCC composite island could transfer freely among different staphylococcal species from different hosts, more attention should be paid to contamination with heavy metals and antibiotics in dairy farming environments, including wastewater, soil, feces, and feed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ghulam Raza Mustafa ◽  
Ke Zhao ◽  
Xueping He ◽  
Shujuan Chen ◽  
Shuliang Liu ◽  
...  

Metals are widely used in animal feed for their growth-stimulating and antimicrobial effects, yet their use may potentially promote the proliferation of antibiotic resistance through co-selection. We studied the prevalence and associations of metal, antibiotic, and disinfectant resistances of 300 Salmonella Typhimurium isolates from pig meat, pig manure, chicken meat, poultry manure, and human stool from Sichuan, China. Seventy four percent of the 300 Salmonella Typhimurium isolates were considered resistant to Cu, almost 50% to Zn and Cr, over 25% to Mn and Cd, and almost 10% to Co. Most of the isolates carried at least one heavy metal resistance gene (HMRG). The Cr-Zn-Cd-resistance gene czcD was carried by 254 isolates and the Cu-resistance genes pcoR and pcoC by 196 and 179 isolates, respectively. Most of the isolates were resistant to at least one antibiotic and almost 80% were multidrug-resistant. The prevalence of resistance to six antibiotics was higher among the pig meat and manure isolates than among other isolates, and that of streptomycin and ampicillin were highest among the pig meat isolates and that of ciprofloxacin and ofloxacin among the pig manure isolates. From 55 to 79% of the isolates were considered resistant to disinfectants triclosan, trichloroisocyanuric acid, or benzalkonium chloride. The metal resistances and HMRGs were associated with resistance to antibiotics and disinfectants. Especially, Cu-resistance genes were associated with resistance to several antibiotics and disinfectants. The transfer of the Cr-Zn-Cd-resistance gene czcD, Cu-resistance gene pcoC, and Co-Ni-resistance gene cnrA into Escherichia coli and the increased Cu-resistance of the transconjugants implied that the resistance genes were located on conjugative plasmids. Thus, the excessive use of metals and disinfectants as feed additives and in animal care may have the potential to promote antibiotic resistance through co-selection and maintain and promote antibiotic resistance even in the absence of antibiotics.


Sign in / Sign up

Export Citation Format

Share Document