scholarly journals Coexistence of Heavy Metal and Antibiotic Resistance within a Novel Composite Staphylococcal Cassette Chromosome in a Staphylococcus haemolyticus Isolate from Bovine Mastitis Milk

2015 ◽  
Vol 59 (9) ◽  
pp. 5788-5792 ◽  
Author(s):  
Huping Xue ◽  
Zhaowei Wu ◽  
Longping Li ◽  
Fan Li ◽  
Yiqing Wang ◽  
...  

ABSTRACTThe structure of a composite staphylococcal cassette chromosome (SCC) carried by a methicillin-resistantStaphylococcus haemolyticus(NW19A) isolated from a bovine milk sample was analyzed. The formation of the circular forms of both single SCC elements and composite SCC elements was detected in NW19A. Twenty heavy metal and antibiotic resistance-related genes coexisted in this composite SCC, suggesting that these genes might be coselected under environmental pressure. Themecgene complex in NW19A, designated type C3, is different from classic C1 or C2 gene complexes structurally and likely evolves differently. Furthermore, results from alignment of the SCC composite island of NW19A with 50 related sequences from different staphylococcal strains provided additional evidence to support the notion that coagulase-negative staphylococci (CoNS) are the original host of heavy metal resistance genes among staphylococci. Given that a SCC composite island could transfer freely among different staphylococcal species from different hosts, more attention should be paid to contamination with heavy metals and antibiotics in dairy farming environments, including wastewater, soil, feces, and feed.

2016 ◽  
Vol 60 (8) ◽  
pp. 5006-5009 ◽  
Author(s):  
Hsiao-Jan Chen ◽  
Yu-Tzu Lin ◽  
Wei-Chun Hung ◽  
Jui-Chang Tsai ◽  
Po-Ren Hsueh ◽  
...  

ABSTRACTWe analyzed the staphylococcal cassette chromosomemec(SCCmec) types of 143 fusidic acid- and methicillin-resistantStaphylococcus epidermidisisolates. The most frequent SCCmectype was SCCmecIII/SCCHg(53%), followed by SCCmecIV (29%). Clonal spreading of SCCmecIII/SCCHgstrains contributed to the increased prevalence of SCCmecIII. A novel non-mecSCC structure, SCC7684, adjacent to SCCmecIII, which carries a newccrCallotype (ccrC3allele 1) and contains heavy metal resistance genes, was identified in 14 isolates.


2018 ◽  
Vol 84 (13) ◽  
pp. e00485-18 ◽  
Author(s):  
Audrey Bioteau ◽  
Romain Durand ◽  
Vincent Burrus

ABSTRACT Integrative and conjugative elements (ICEs) of the SXT/R391 family are key drivers of the spread of antibiotic resistance in Vibrio cholerae, the infectious agent of cholera, and other pathogenic bacteria. The SXT/R391 family of ICEs was defined based on the conservation of a core set of 52 genes and site-specific integration into the 5′ end of the chromosomal gene prfC. Hence, the integrase gene int has been intensively used as a marker to detect SXT/R391 ICEs in clinical isolates. ICEs sharing most core genes but differing by their integration site and integrase gene have been recently reported and excluded from the SXT/R391 family. Here we explored the prevalence and diversity of atypical ICEs in GenBank databases and their relationship with typical SXT/R391 ICEs. We found atypical ICEs in V. cholerae isolates that predate the emergence and expansion of typical SXT/R391 ICEs in the mid-1980s in seventh-pandemic toxigenic V. cholerae strains O1 and O139. Our analyses revealed that while atypical ICEs are not associated with antibiotic resistance genes, they often carry cation efflux pumps, suggesting heavy metal resistance. Atypical ICEs constitute a polyphyletic group likely because of occasional recombination events with typical ICEs. Furthermore, we show that the alternative integration and excision genes of atypical ICEs remain under the control of SetCD, the main activator of the conjugative functions of SXT/R391 ICEs. Together, these observations indicate that substitution of the integration/excision module and change of specificity of integration do not preclude atypical ICEs from inclusion into the SXT/R391 family. IMPORTANCE Vibrio cholerae is the causative agent of cholera, an acute intestinal infection that remains to this day a world public health threat. Integrative and conjugative elements (ICEs) of the SXT/R391 family have played a major role in spreading antimicrobial resistance in seventh-pandemic V. cholerae but also in several species of Enterobacteriaceae. Most epidemiological surveys use the integrase gene as a marker to screen for SXT/R391 ICEs in clinical or environmental strains. With the recent reports of closely related elements that carry an alternative integrase gene, it became urgent to investigate whether ICEs that have been left out of the family are a liability for the accuracy of such screenings. In this study, based on comparative genomics, we broaden the SXT/R391 family of ICEs to include atypical ICEs that are often associated with heavy metal resistance.


2018 ◽  
Vol 24 (6) ◽  
pp. 782-791 ◽  
Author(s):  
Wenwen Deng ◽  
Yuan Quan ◽  
Shengzhi Yang ◽  
Lijuan Guo ◽  
Xiuli Zhang ◽  
...  

2019 ◽  
Vol 8 (7) ◽  
Author(s):  
Olubukola Oluranti Babalola ◽  
Bukola Rhoda Aremu ◽  
Ayansina Segun Ayangbenro

Bacillus cereus NWUAB01 was isolated from a gold-mining site in Vryburg, South Africa, for its multiple heavy metal resistance properties. Here, we report the draft genome sequence of B. cereus NWUAB01 obtained with Illumina sequencing.


2019 ◽  
Vol 8 (4) ◽  
Author(s):  
Yong-Joon Cho ◽  
Ahnna Cho ◽  
Soon Gyu Hong ◽  
Han-Gu Choi ◽  
Ok-Sun Kim

Arthrobacter oryzae TNBS02 was isolated from soil at Terra Nova Bay of Victoria Land, Antarctica. The genome consists of a chromosome with 4,248,670 bp which contains a total of 3,994 genes.


Our Nature ◽  
1970 ◽  
Vol 7 (1) ◽  
pp. 203-206 ◽  
Author(s):  
M. Sharma ◽  
H.P. Thapaliya

Heavy metal resistant bacterial isolates from the effluent in a garment industry site were examined to assess their resistance towards multiple antibiotics. Heavy metal resistance property has been found to enhance the antibiotic resistance ability of microorganisms. Isolation of the heavy metal resistant organisms was done in media containing salts of heavy metals. Organisms were identified belonging to the genera Bacillus, Corynebacterium, Lactobacillus, Aeromonas and Enterococcus. Bacterial isolates were tested for their sensitivity to seven common antibiotics (penicillin, tetracycline, erythromycin, chloramphenicol, gentamicin, vancomycin and cotrimoxazole) using Kirby-Bauer technique. Isolates were found to be resistant to multiple antibiotics but all the isolates were sensitive to gentamicin. The data of our study indicates that metal pollution of the environment is the cause of heavy metal resistance isolates and hence antibiotic resistance.Key words: Heavy metal, effluent, antibiotics, resistance, Bacteria, pollution.DOI: 10.3126/on.v7i1.2572Our Nature (2009) 7:203-206  


2013 ◽  
Vol 79 (7) ◽  
pp. 2471-2476 ◽  
Author(s):  
Sangmi Lee ◽  
M. Rakic-Martinez ◽  
L. M. Graves ◽  
T. J. Ward ◽  
R. M. Siletzky ◽  
...  

ABSTRACTInListeria monocytogenesserotype 4b isolates from sporadic listeriosis, heavy metal resistance was primarily encountered in certain clonal groups (ECI, ECII, and ECIa). All arsenic-resistant isolates harbored the arsenic resistance cassette previously identified in pLI100; ECIa harbored additional arsenic resistance genes and a novel cadmium resistance determinant in a conserved chromosomal locus.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Leena Neyaz ◽  
Anand B. Karki ◽  
Mohamed K. Fakhr

Here, we report the genome sequence of the megaplasmid-bearing Staphylococcus sciuri strain B9-58B, isolated from retail pork. This strain contains a 2,761,440-bp chromosome and a 162,858-bp megaplasmid. The genome contains putative genes involved in virulence, the stress response, and antimicrobial agent and heavy metal resistance.


Sign in / Sign up

Export Citation Format

Share Document