Thermal Resistance of Single Strains of Shiga Toxin-Producing Escherichia coli O121:H19 and O157:H7 Based on Culture Preparation Method and Osmolyte-Reduced Water Activity

Author(s):  
Jennifer C Acuff ◽  
Kim Waterman ◽  
Jahnavi Ramakrishnan ◽  
Monica A Ponder

Pathogen thermal resistance studies on low-water activity foods (LWAF) use a variety of methods to inoculate food, as well as strategies to reduce water activity, which can influence thermal resistance observations. This study investigated effects of culture preparation method and osmolyte-induced water activity on thermal resistance of two Shiga toxin-producing Escherichia coli (STEC; O121:H19, O157:H7) challenged with isothermal conditions, determining D - and z -values for each isolate (56, 59, and 62 ° C). Tryptic Soy Broth (TSB) and Agar (lawn cultures) were compared. D -values of broth cultures were significantly and consistently larger than those of lawn cultures, and O121 was significantly more resistant than O157, but only at 56 ° C ( p < 0.05). To compare potential effects of water activity on STEC thermal resistance, cells were suspended in osmolyte solutions with varying water activity: high (TSB, a w 0.99), intermediate (61% glycerol or 26% NaCl, a w 0.75), and low (82% glycerol, a w 0.5). In most instances, STEC in high-water activity broth exhibited greater heat resistance compared to reduced-water activity solutions, except the glycerol intermediate-water activity solution (a w 0.75). Magnitudes varied with strain and temperature. The z -values of lawn cultures were significantly lower than those of broth cultures ( p < 0.05), but there were only some differences between high-a w and reduced-a w samples. There were no significant differences of z -values based on strain type. These results highlight that thermal resistance can be affected by culture preparation and that osmolyte-induced changes to water activity influence thermal inactivation of STEC by varying magnitudes. These results emphasize the challenges between extrapolating results from lab inactivation kinetic experiments to determine the inactivation of low water activity foods, especially those considered dry in nature.

2019 ◽  
Vol 82 (8) ◽  
pp. 1308-1313 ◽  
Author(s):  
QUINCY J. SUEHR ◽  
NATHAN M. ANDERSON ◽  
SUSANNE E. KELLER

ABSTRACT Non-O157 Shiga toxin–producing Escherichia coli infections have recently been associated with wheat flour on two separate accounts in the United States and Canada. However, there is little information regarding the thermal resistance and longevity of non-O157 Shiga toxin–producing Escherichia coli during storage in low-moisture environments. The objectives of this study were to determine the thermal inactivation kinetics of E. coli O121 in wheat flour and to compare the thermal inactivation rates with those of other pathogens. Wheat flour, inoculated with E. coli O121, was equilibrated at 25°C to a water activity of 0.45 in a humidity-controlled conditioning chamber. Inoculated samples were treated isothermally at 70, 75, and 80°C, and posttreatment population survivor ratios were determined by plate counting. D- and z-values calculated with a log-linear model, were compared with those obtained in other studies. At 70, 75, and 80°C, the D-values for E. coli O121 were 18.16 ± 0.96, 6.47 ± 0.50, and 4.58 ± 0.40 min, respectively, and the z-value was 14.57 ± 2.21°C. Overall, E. coli O121 was observed to be slightly less thermally resistant than what has been previously reported for Salmonella Enteritidis PT30 in wheat flour as measured under the same conditions with the same methods.


2016 ◽  
Vol 79 (11) ◽  
pp. 1833-1839 ◽  
Author(s):  
IAN M. HILDEBRANDT ◽  
BRADLEY P. MARKS ◽  
ELLIOT T. RYSER ◽  
ROSSANA VILLA-ROJAS ◽  
JUMING TANG ◽  
...  

ABSTRACT Limited prior research has shown that inoculation methods affect thermal resistance of Salmonella in low-moisture foods; however, these effects and their repeatability have not been systematically quantified. Consequently, method variability across studies limits utility of individual data sets and cross-study comparisons. Therefore, the objective was to evaluate the effects of inoculation methodologies on stability and thermal resistance of Salmonella in a low-moisture food (wheat flour), and the repeatability of those results, based on data generated by two independent laboratories. The experimental design consisted of a cross-laboratory comparison, both conducting isothermal Salmonella inactivation studies in wheat flour (~0.45 water activity, 80°C), utilizing five different inoculation methods: (i) broth-based liquid inoculum, (ii) lawn-based liquid inoculum, (iii) lawn-based pelletized inoculum, (iv) direct harvest of lawn culture with wheat flour, and (v) fomite transfer of a lawn culture. Inoculated wheat flour was equilibrated ~5 days to ~0.45 water activity and then was subjected to isothermal treatment (80°C) in aluminum test cells. Results indicated that inoculation method impacted repeatability, population stability, and inactivation kinetics (α = 0.05), regardless of laboratory. Salmonella inoculated with the broth-based liquid inoculum method and the fomite transfer of a lawn culture method exhibited instability during equilibration. Lawn-based cultures resulted in stable populations prior to thermal treatment; however, the method using direct harvest of lawn culture with wheat flour yielded different D-values across the laboratories (α = 0.05), which was attributed to larger potential impact of operator variability. The lawn-based liquid inoculum and the lawn-based pelletized inoculum methods yielded stable inoculation levels and repeatable D-values (~250 and ~285 s, respectively). Also, inoculation level (3 to 8 log CFU/g) did not affect D-values (using the lawn-based liquid inoculum method). Overall, the results demonstrate that inoculation methods significantly affect Salmonella population kinetics and subsequent interpretation of thermal inactivation data for low-moisture foods.


2013 ◽  
Vol 76 (8) ◽  
pp. 1434-1437 ◽  
Author(s):  
J. B. LUCHANSKY ◽  
A. C. S. PORTO-FETT ◽  
B. A. SHOYER ◽  
J. PHILLIPS ◽  
D. EBLEN ◽  
...  

For each of two trials, freshly ground beef of variable fat content (higher: 70:30 %lean:%fat; lower: 93:7 %lean:%fat) was separately inoculated with ca. 7.0 log CFU/g of a single strain of Escherichia coli serotypes O26:H11, O45:H2, O103:H2, O104:H4, O111:H−, O121:H19, O145:NM, and O157:H7. Next, ca. 3-g samples of inoculated beef were transferred into sterile filter bags and then flattened (ca. 1.0 mm thick) and vacuum sealed. For each temperature and sampling time, three bags of the inoculated wafers of beef were submerged in a thermostatically controlled water bath and heated to an internal temperature of 54.4°C (130°F) for up to 90 min, to 60°C (140°F) for up to 4 min, or to 65.6°C (150°F) for up to 0.26 min. In lower fat wafers, D-values ranged from 13.5 to 23.6 min, 0.6 to 1.2 min, and 0.05 to 0.08 min at 54.4, 60.0, and 65.6°C, respectively. Heating higher fat wafers to 54.4, 60.0, and 65.6°C generated D-values of 18.7 to 32.6, 0.7 to 1.1, and 0.05 to 0.2 min, respectively. In addition, we observed reductions of ca. 0.7 to 6.7 log CFU/g at 54.4°C after 90 min, ca. 1.1 to 6.1 log CFU/g at 60.0°C after 4 min, and 0.8 to 5.8 log CFU/g at 65.6°C after 0.26 min. Thus, cooking times and temperatures effective for inactivating a serotype O157:H7 strain of E. coli in ground beef were equally effective against the seven non-O157:H7 Shiga toxin–producing strains investigated herein.


2003 ◽  
Vol 66 (4) ◽  
pp. 664-667 ◽  
Author(s):  
LIHAN HUANG ◽  
VIJAY K. JUNEJA

A study was conducted to investigate the antimicrobial effect of sodium lactate (NaL) (0, 1.5, 3.0, and 4.5%) on the survival of Escherichia coli O157:H7 in 93% lean ground beef. Samples inoculated with a mixture of four strains of E. coli O157:H7 (107 to 108 CFU/g) were subjected to immersion heating in a water bath stabilized at 55, 57.5, 60, 62.5, or 65°C. Results of statistical analysis indicated that the heating temperature was the only factor affecting the decimal reduction times (D-values) of E. coli O157:H7 in 93% lean ground beef. The change in temperature required to change the D-value (the z-value) was determined as 7.6°C. The thermal resistance of this organism was neither affected by the addition of NaL nor by the interactions between NaL and temperature. Adding NaL to ground beef to reduce the thermal resistance of E. coli O157: H7 is therefore not recommended.


2018 ◽  
Vol 81 (6) ◽  
pp. 986-992 ◽  
Author(s):  
JAGPINDER S. BRAR ◽  
JOLENA N. WADDELL ◽  
MATTHEW BAILEY ◽  
SYDNEY CORKRAN ◽  
CARMEN VELASQUEZ ◽  
...  

ABSTRACT Decimal reduction time (D-value) was calculated for six non-O157 Shiga toxin–producing Escherichia coli (STEC) in a laboratory medium and ground beef. For the laboratory medium, an overnight culture of each strain of STEC was divided into 10-mL sample bags and heated in a water bath for a specific time on the basis of the temperatures. Survival curves were generated by plotting the surviving bacterial population against time, and a linear-log primary model was used to estimate the D-values from survival curves. The z-values (the temperature raised to reduce the D-value by one-tenth) were calculated by plotting the log D-values against temperature. Similarly, for ground beef, six fat contents, 5, 10, 15, 20, 25, and 30% of ground beef were formulated for this study. Inoculated meat was divided into 5-g pouches and submerged in a water bath set at specific temperatures (55, 60, 65, 68, and 71.1°C). The average D-value for these strains in a laboratory medium was 17.96 min at 55°C, which reduced significantly (P < 0.05) to 1.58 min at 60°C, and then further reduced (P < 0.05) to 0.46 min at 65°C. In ground beef, a negative correlation (P < 0.05) between fat content of ground beef and D-values was observed at 55°C. However, at temperatures greater than 60°C, there was no impact (P > 0.05) of fat content of ground beef on the thermal resistance of non-O157 STECs. Irrespective of the fat content of ground beef, the D-values ranged from 15.93 to 11.69, 1.15 to 1.12, and 0.14 to 0.09 min and 0.05 at 55, 60, 65, and 68°C, respectively. The data generated from this study can be helpful for the meat industry to develop predictive models for thermal inactivation of non-O157 STECs in ground beef with varying fat content.


1997 ◽  
Vol 60 (5) ◽  
pp. 471-475 ◽  
Author(s):  
ALICIA ORTA-RAMIREZ ◽  
JAMES F. PRICE ◽  
YIH-CHIH HSU ◽  
GIRIDARAN J. VEERAMUTHU ◽  
JAMIE S. CHERRY-MERRITT ◽  
...  

The USDA has established processing schedules for beef products based on the destruction of pathogens. Several enzymes have been suggested as potential indicators of heat processing. However, no relationship between the inactivation rates of these enzymes and those of pathogenic microorganisms has been determined. Our objective was to compare the thermal inactivation of Escherichia coli O157:H7 and Salmonella senftenberg to those of endogenous muscle proteins. Inoculated and noninoculated ground beef samples were heated at four temperatures for predetermined intervals of time in thermal-death-time studies. Bacterial counts were determined and enzymes were assayed for residual activity. The D values for E. coli O157:H7 were 46.10, 6.44, 0.43, and 0.12 min at 53, 58, 63, and 68°C, respectively, with a z value of 5.60°C. The D values for S. senftenberg were 53.00, 15.17, 2.08, and 0.22 min at 53, 58, 63, and 68°C, respectively, with a z value of 6.24°C. Apparent D values at 53, 58, 63, and 68°C were 352.93, 26.31, 5.56, and 3.33 min for acid phosphatase; 6968.64, 543.48, 19.61, and 1.40 min for lactate dehydrogenase; and 3870.97, 2678.59, 769.23, and 42.92 min for peroxidase; with z values of 7.41,3.99, and 7.80°C, respectively. Apparent D values at 53, 58, 63, and 66°C were 325.03, 60.07, 3.07, and 1.34 min for phosphoglycerate mutase; 606.72, 89.86, 4.40, and 1.28 min for glyceraldehyde-3-phosphate dehydrogenase; and 153.06, 20.13, 2.25, and 0.74 min for triose phosphate isomerase; with z values of 5.18, 4.71, and 5.56°C, respectively. The temperature dependence of triose phosphate isomerase was similar to those of both E. coli O157 :H7 and S. senftenberg, suggesting that this enzyme could be used as an endogenous time-temperature indicator in beef products.


Author(s):  
Susmita Phattepuri ◽  
Prince Subba ◽  
Arjun Ghimire ◽  
Shiv Nandan Sah

Milk is an excellent medium for the growth of many bacteria. This study aimed to determine antibiotic profiling and thermal inactivation of Staphylococcus aureus and Escherichia coli isolated from raw milk of Dharan. Total viable count, total Staphylococcal count, and total coliform count were carried out by conventional microbiological methods. Identification was done on the basis of Gram staining and biochemical tests. The antibiotic susceptibility test of the isolates carried out by the modified Kirby-Baur disc diffusion method. Thermal inactivation of S. aureus and E. coli were carried out by subjecting to thermal treatment in a water bath. Total plate count ranged from 204×104 CFU/mL to 332×105 CFU/mL. Total staphylococcal count and total coliform count ranged from 14×105 CFU/mL to 8×106 CFU/mL and 11×104 CFU/mL to 3×106 CFU/mL respectively. S. aureus showed an increasing resistance patterns towards Ampicillin, Cefotixin, Carbenicillin and Cefotaxime. Ciprofloxacin, Erythromycin, Amikacin, Gentamycin, Azithromycin, and Chloramphenicol were found to be effective against S. aureus. All the E. coli isolates were resistant to Ampicillin and least resistant to Cefotixin. Chloramphenicol, Amikacin, Azithromycin, and Nalidixic acid were found highly effective to E. coli. The D-values for S. aureus at 56°C, 58°C and 60°C were 1.36 min, 1.19 min, and 1.09 min respectively. The Z-value was 14.92°C. While D-values were obtained as 0.98 min, 0.75 min, and 0.57 min for E. coli at 56° C, 58° C and 60° C respectively, and Z-value was 9.75° C. Hence, S. aureus was found to be more heat resistant than E. coli.


2015 ◽  
Vol 78 (8) ◽  
pp. 1467-1471 ◽  
Author(s):  
EMEFA ANGELICA MONU ◽  
MALCOND VALLADARES ◽  
DORIS H. D'SOUZA ◽  
P. MICHAEL DAVIDSON

Produce has been associated with a rising number of foodborne illness outbreaks. While much produce is consumed raw, some is treated with mild heat, such as blanching or cooking. The objectives of this research were to compare the thermal inactivation kinetics of Listeria monocytogenes, Salmonella enterica, Shiga toxin–producing Escherichia coli (STEC) O157:H7, and non-O157 STEC in phosphate-buffered saline (PBS; pH 7.2) and a spinach homogenate and to provide an estimate of the safety of mild heat processes for spinach. Five individual strains of S. enterica, L. monocytogenes, STEC O157:H7, and non-O157 STEC were tested in PBS in 2-ml glass vials, and cocktails of the organisms were tested in blended spinach in vacuum-sealed bags. For Listeria and Salmonella at 56 to 60°C, D-values in PBS ranged from 4.42 ± 0.94 to 0.35 ± 0.03 min and 2.11 ± 0.14 to 0.16 ± 0.03 min, respectively. D-values at 54 to 58°C were 5.18 ± 0.21 to 0.53 ± 0.04 min for STEC O157:H7 and 5.01 ± 0.60 to 0.60 ± 0.13 min for non-O157 STEC. In spinach at 56 to 60°C, Listeria D-values were 11.77 ± 2.18 to 1.22 ± 0.12 min and Salmonella D-values were 3.51 ± 0.06 to 0.47 ± 0.06 min. D-values for STEC O157:H7 and non-O157 STEC were 7.21 ± 0.17 to 1.07 ± 0.11 min and 5.57 ± 0.38 to 0.99 ± 0.07 min, respectively, at 56 to 60°C. In spinach, z-values were 4.07 ± 0.16, 4.59 ± 0.26, 4.80 ± 0.92, and 5.22 ± 0.20°C for Listeria, Salmonella, STEC O157:H7, and non-O157 STEC, respectively. Results indicated that a mild thermal treatment of blended spinach at 70°C for less than 1 min would result in a 6-log reduction of all pathogens tested. These findings may assist the food industry in the design of suitable mild thermal processes to ensure food safety.


2019 ◽  
Vol 82 (7) ◽  
pp. 1110-1115 ◽  
Author(s):  
NURUL HAWA AHMAD ◽  
CEMRE ÖZTABAK ◽  
BRADLEY P. MARKS ◽  
ELLIOT T. RYSER

ABSTRACTDry inoculation (DI) methods using a dry carrier have gained considerable interest for assessing thermal inactivation of Salmonella and other microorganisms in low-moisture foods. However, the effect of carrier residues on microbial resistance to heat remains largely unknown. This study aimed to determine the effect of talc powder on thermal resistance of Enterococcus faecium NRRL-B2354 (a Salmonella surrogate) in almond meal at 0.45 water activity (aw). Whole almonds were either immersed in an E. faecium suspension for wet inoculation (WI) or mixed with inoculated talc powder for DI. Two additional experimental conditions, inoculation of WI almond meal with added uninoculated talc (WT) and inoculated talc powder alone, were conducted. After WI, DI, and WT, the almonds were equilibrated to 0.45 aw, ground into a meal, and reequilibrated to 0.45 aw. Isothermal treatments were performed by heating almond meal (about 1 g) in aluminum test cells in a water bath at 80°C, with samples collected at more than five sequential time points from triplicate isothermal runs. E. faecium was enumerated by immediately cooling, diluting, and plating the samples on a nonselective or differential medium. E. faecium was more thermally resistant in DI (D80°C: 63.5 ± 1.9 min) compared with WI almond meal (D80°C: 40.5 ± 1.0 min; P < 0.05), but the resistance in WT almond meal (46.9 ± 0.9 min) was between and different from (P < 0.05) both DI and WI. E. faecium was less resistant in talc powder alone (20.6 ± 1.1 min) compared with all other almond meal samples. Overall, residual talc affected the thermal resistance of E. faecium. Therefore, when determining thermal resistance or validating commercial processes, carriers such as talc should not be used for inoculation of low-moisture foods without first knowing their impact on the target organism.HIGHLIGHTS


Sign in / Sign up

Export Citation Format

Share Document