Philocleon’s Fables: Ancient Storytelling and a Modern Analogue

2018 ◽  
pp. 351-364
Author(s):  
P.A. Stadter
Keyword(s):  
The Holocene ◽  
2021 ◽  
pp. 095968362110665
Author(s):  
Helen Hallang ◽  
Cynthia A Froyd ◽  
John F Hiemstra ◽  
Sietse O Los

An environmental reconstruction based on palynological evidence preserved in peat was carried out to examine late-Holocene alpine tree line dynamics in the context of past climatic changes on Galdhøpiggen (Jotunheimen, southern Norway). We analysed a peat core taken from a mire at the present-day tree line (1000 m a.s.l.), c. 450 m downslope from the lower limit of sporadic permafrost. We adopted a combination of commonly used indicators of species’ local presence to reconstruct past vegetation assemblages, such as the relative pollen abundance (%), pollen accumulation rate (PAR), and presence of indicator species. Additionally, fossil pollen from the peat sequence was compared to modern pollen from a surface moss polster to establish a modern analogue. The results were compared with studies covering the late-Holocene climatic changes in the area. The reconstruction demonstrates that a pine-dominated woodland reached above the present-day tree line at c. 4300 cal. yr BP, suggesting a warmer climate suitable for Scots pine ( Pinus sylvestris) growth at this altitude. Scots pine retreated to lower altitudes between c. 3400 and 1700 cal. yr BP, accompanied by the descent of the low-alpine shrub-dominated belt, in response to cooling climatic conditions. The colder period covered c. 1700–170 cal. yr BP, and an open downy birch ( Betula pubescens) woodland became widespread at 1000 m a.s.l., whilst pine remained sparse at this altitude. From c. 170 cal. yr BP onwards, warming allowed pine to re-establish its local presence alongside downy birch at 1000 m a.s.l.


2021 ◽  
Author(s):  
Julia Tindall ◽  
Alan Haywood ◽  
Ulrich Salzmann ◽  
Aisling Dolan

<p>Modelling results from PlioMIP2 (the Pliocene Model Intercomparison Project Phase 2) focussing on MIS KM5c; ~3.205Ma, suggest that global mean surface air temperature was 1.7 – 5.2 °C higher than the preindustrial.  This warming was amplified at the poles and over land.  The results are in reasonable agreement with paleodata over the ocean.   </p><p>Over the land the situation is more complicated.  Model and data are in very good agreement at lower latitudes, however at high latitudes an initial data-model comparison shows much warmer mPWP temperatures from data than from models.   </p><p>Here we consider possible reasons for this data-model discord at high latitudes.  These include uncertainties in model boundary conditions (such as CO<sub>2 </sub>and orbital forcing), and whether there are local site-specific conditions which need to be accounted for.  We also show that the seasonal cycle in mPWP temperatures at these high latitude sites has no modern analogue.  This could lead to inaccuracies when comparing model derived mean annual temperatures with quantitative climatic estimates from palaeobotanical data using Nearest Living Relative methods.</p>


2011 ◽  
Vol 8 (10) ◽  
pp. 2977-2991 ◽  
Author(s):  
C. Jones ◽  
S. A. Crowe ◽  
A. Sturm ◽  
K. L. Leslie ◽  
L. C. W. MacLean ◽  
...  

Abstract. This study explores Mn biogeochemistry in a stratified, ferruginous lake, a modern analogue to ferruginous oceans. Intense Mn cycling occurs in the chemocline where Mn is recycled at least 15 times before sedimentation. The product of biologically catalyzed Mn oxidation in Lake Matano is birnessite. Although there is evidence for abiotic Mn reduction with Fe(II), Mn reduction likely occurs through a variety of pathways. The flux of Fe(II) is insufficient to balance the reduction of Mn at 125 m depth in the water column, and Mn reduction could be a significant contributor to CH4 oxidation. By combining results from synchrotron-based X-ray fluorescence and X-ray spectroscopy, extractions of sinking particles, and reaction transport modeling, we find the kinetics of Mn reduction in the lake's reducing waters are sufficiently rapid to preclude the deposition of Mn oxides from the water column to the sediments underlying ferruginous water. This has strong implications for the interpretation of the sedimentary Mn record.


2022 ◽  
Author(s):  
Julia C. Tindall ◽  
Alan M. Haywood ◽  
Ulrich Salzmann ◽  
Aisling M. Dolan ◽  
Tamara Fletcher

Abstract. Reconciling palaeodata with model simulations of the Pliocene climate is essential for understanding a world with atmospheric CO2 concentration near 400 parts per million by volume. Both models and data indicate an amplified warming of the high latitudes during the Pliocene, however terrestrial data suggests Pliocene high latitude temperatures were much higher than can be simulated by models. Here we show that understanding the Pliocene high latitude terrestrial temperatures is particularly difficult for the coldest months, where the temperatures obtained from models and different proxies can vary by more than 20 °C. We refer to this mismatch as the ‘warm winter paradox’. Analysis suggests the warm winter paradox could be due to a number of factors including: model structural uncertainty, proxy data not being strongly constrained by winter temperatures, uncertainties on data reconstruction methods and also that the Pliocene high latitude climate does not have a modern analogue. Refinements to model boundary conditions or proxy dating are unlikely to contribute significantly to the resolution of the warm winter paradox. For the Pliocene, high latitude, terrestrial, summer temperatures, models and different proxies are in good agreement. Those factors which cause uncertainty on winter temperatures are shown to be much less important for the summer. Until some of the uncertainties on winter, high latitude, Pliocene temperatures can be reduced, we suggest a data-model comparison should focus on the summer. This is expected to give more meaningful and accurate results than a data-model comparison which focuses on the annual mean.


2021 ◽  
Author(s):  
◽  
Ursula Alyson Cochran

<p>New Zealand is situated on the boundary between the Pacific and Australian tectonic plates. The Wellington region lies near the southern end of the Hikurangi subduction zone and within a zone of major, active strike-slip faults. Wellington's paleoseismic and historic records indicate that large surface rupture earthquakes have occurred on these faults in the past. Development of a complete record of past large earthquakes is a high priority for the region because of the risk posed by occurrence of large earthquakes in the future. The existing paleoseismic record has been derived predominantly from studies of fault trench stratigraphy, raised beach ridges and offset river terraces. The sedimentary record of lakes and coastal waterbodies is a source of information that has not been used specifically for paleoseismic purposes in the region. Therefore investigation of Wellington's sedimentary record is used in this thesis to make a contribution to the paleoseismic record. Holocene sedimentary sequences are studied from three small, low elevation, coastal waterbodies: Taupo Swamp, Okupe Lagoon and Lake Kohangapiripiri. Sequences of between 200 and 650 cm depth were collected using a hand-operated coring device. Sedimentology and diatom microfossil content were analysed and interpreted to enable reconstruction of paleoenvironment at each site. Radiocarbon dating was used to provide chronologies for the sequences that are aged between 5000 and 7500 calibrated years before present (cal. years BP). Diatom analysis is the main tool used to reconstruct paleoenvironment and detect evidence for occurrence of past large earthquakes. To aid reconstruction of sedimentary sequences used in this project, as well as coastal sequences in New Zealand in general, a coastal diatom calibration set was constructed using 50 sites around New Zealand. Modern diatom distribution and abundance, and associated environmental variables are analysed using ordination and weighted averaging techniques. Detrended correspondence analysis arranges species according to salinity preferences and divides sites clearly into waterbody types along a coastal gradient. This analysis enables reconstruction of waterbody type from fossil samples by passive placement onto ordination diagrams. Weighted averaging regression of calibration set samples results in a high correlation (r2jack=0.84) between observed and diatom inferred salinity, and enables salinity preferences and tolerances to be derived for 100 species. This confirms for the first time that species' preferences derived in the Northern Hemisphere are generally applicable to diatoms living in the coastal zone of New Zealand. Weighted averaging calibration and the modern analogue technique are used to generate quantitative estimates of paleosalinity for fossil samples. Paleoenvironmental reconstructions of Taupo Swamp, Okupe Lagoon and Lake Kohangapiripiri indicate that each waterbody has been isolated from the sea during the late Holocene. Isolation has been achieved through interplay of sediment accumulation causing growth of barrier beaches, and coseismic uplift. Ten distinct transitions between different paleoenvironments are recognised from the three sequences. These transitions involve changes in relative sea level or water table level often in association with catchment disturbance or marine influx events. All transitions occur suddenly and are laterally extensive and synchronous within each waterbody. Quantitative estimates of paleosalinity and waterbody type are used to differentiate between large and small magnitude changes in paleoenvironment. Five transitions involve large amounts of paleoenvironmental change and provide evidence for earthquakes occurring at approximately 5200, approximately 3200, and approximately 2300 cal. years BP. Five other transitions are consistent with the effects of large earthquakes occurring at approximately 6800, 2200, approximately 1000, approximately 500 cal. years BP and 1855 AD but do not provide independent evidence of the events. Environmental transitions at Lake Kohangapiripiri clarify the timing of rupture of the Wairarapa Fault by bracketing incompatible age estimates derived from two different sites on the fault. The oldest environmental transitions recognised at Taupo Swamp and Okupe Lagoon both occur at approximately 3200 cal. years BP indicating that western Wellington was uplifted at this time. Environmental transitions are recorded at all three study sites at approximately 2300 cal. years BP indicating that the entire western and central Wellington region experienced coseismic uplift at this time. Because of the distance between sites this apparent synchroneity implies that several faults in the region ruptured at a similar time. Investigation of sedimentary sequences contributes to the existing paleoseismic record by providing additional estimates of timing for past large earthquakes, enabling estimation of the areal extent of the effects of past earthquakes, and by highlighting periods of fault rupture activity in the late Holocene.</p>


2013 ◽  
Vol 9 (4) ◽  
pp. 4553-4598 ◽  
Author(s):  
G. Milzer ◽  
J. Giraudeau ◽  
S. Schmidt ◽  
F. Eynaud ◽  
J. Faust

Abstract. In the present study we investigate dinocyst assemblages in the Trondheimsfjord over the last 25 to 50 yr from three well-dated multi-cores (210Pb and 137Cs) retrieved along the fjord axis. The downcore distribution of the cysts is discussed in view of changes of the key surface water parameters sea-surface temperatures (SSTs) and sea-surface salinities (SSSs) monitored in the fjord, as well as river discharges. We examine the impact of the North Atlantic Oscillation pattern and of waste water supply from the local industry and agriculture on the fjord ecological state and hence dinocyst species diversity. Our results show that dinocyst production and diversity in the fjord is not evidently affected by human-induced eutrophication. Instead the assemblages appear to be mainly controlled by the NAO-related changes in physico-chemical characteristics of the surface mixed layer. Still, discharges of major rivers were modulated, since 1985 by the implementation of hydropower plants which certainly influences the freshwater and nutrient supply into the fjord. The impact, however, is variable according to the local geographical setting, and barely differentiated from natural changes in river run off. We ultimately test the use of the modern analogue technique (MAT) for the reconstruction of winter and summer SSTs and SSSs and annual primary productivity (PP) in this particular fjord setting. The reconstructed data are compared with time-series of SSTs and SSSs measured at 10 m water depth, as well as with mean annual PPs along the Norwegian coast and within Scandinavian fjords. The reconstructions are in general good agreement with the instrumental measurements and observations from other fjords. Major deviations can be addressed to peculiarities in the assemblages linked to the particular fjord setting and the related hydrological structure.


2021 ◽  
Author(s):  
Daniel Collins ◽  
Howard Johnson

&lt;p&gt;The interaction of river and marine processes in the fluvial to marine transition zone (FMTZ) fundamentally impacts sedimentary dynamics and deposition. Heterolithics are important facies within ancient and modern FMTZs but the preserved signal of river flood, wave and tidal variations in heterolithics remains uncertain. This study integrates facies and ichnofacies characteristics of heterolithics in the Lambir Formation (Baram Delta Province, NW Borneo), with information of larger-scale stratigraphic architecture and modern analogue information, to interpret the preserved record of river flood deposits under the influence of tides and waves in an ancient FMTZ. Within the FMTZ of distributary channels, interpreted proximal&amp;#8211;distal sedimentological and stratigraphic trends suggest: (1) a proximal fluvial-dominated, tide-influenced subzone; (2) a distal fluvial- to wave-dominated subzone; and (3) a conspicuously absent tide-dominated subzone. During coupled storm and river floods, fluvial processes dominated the FMTZ along major and minor distributary channels and channel mouths, causing significant overprinting of preceding interflood deposits and deposition of thicker, sandier event beds. Intervening interflood deposits are muddier, with increased bioturbation, and may variably preserve sedimentary indicators of tide and wave processes. Despite interpreted fluvial&amp;#8211;tidal channel units and mangrove influence implying tidal processes, there is a paucity of unequivocal tidal indicators (e.g. cyclical heterolithic layering). This suggests that process preservation in the FMTZ preserved in the Lambir Formation primarily records episodic (flashy) river discharge, river flood and storm overprinting of tidal processes, and possible backwater dynamics.&amp;#160;&lt;/p&gt;


2003 ◽  
pp. 193-205 ◽  
Author(s):  
N. TERENCE EDGAR ◽  
C. BLAINE CECIL ◽  
R.E. MATTICK ◽  
ALLAN R. CHIVAS ◽  
PATRICK DE DECKKER ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document