scholarly journals The Warm Winter Paradox in the Pliocene High Latitudes

2022 ◽  
Author(s):  
Julia C. Tindall ◽  
Alan M. Haywood ◽  
Ulrich Salzmann ◽  
Aisling M. Dolan ◽  
Tamara Fletcher

Abstract. Reconciling palaeodata with model simulations of the Pliocene climate is essential for understanding a world with atmospheric CO2 concentration near 400 parts per million by volume. Both models and data indicate an amplified warming of the high latitudes during the Pliocene, however terrestrial data suggests Pliocene high latitude temperatures were much higher than can be simulated by models. Here we show that understanding the Pliocene high latitude terrestrial temperatures is particularly difficult for the coldest months, where the temperatures obtained from models and different proxies can vary by more than 20 °C. We refer to this mismatch as the ‘warm winter paradox’. Analysis suggests the warm winter paradox could be due to a number of factors including: model structural uncertainty, proxy data not being strongly constrained by winter temperatures, uncertainties on data reconstruction methods and also that the Pliocene high latitude climate does not have a modern analogue. Refinements to model boundary conditions or proxy dating are unlikely to contribute significantly to the resolution of the warm winter paradox. For the Pliocene, high latitude, terrestrial, summer temperatures, models and different proxies are in good agreement. Those factors which cause uncertainty on winter temperatures are shown to be much less important for the summer. Until some of the uncertainties on winter, high latitude, Pliocene temperatures can be reduced, we suggest a data-model comparison should focus on the summer. This is expected to give more meaningful and accurate results than a data-model comparison which focuses on the annual mean.

2021 ◽  
Author(s):  
Julia Tindall ◽  
Alan Haywood ◽  
Ulrich Salzmann ◽  
Aisling Dolan

<p>Modelling results from PlioMIP2 (the Pliocene Model Intercomparison Project Phase 2) focussing on MIS KM5c; ~3.205Ma, suggest that global mean surface air temperature was 1.7 – 5.2 °C higher than the preindustrial.  This warming was amplified at the poles and over land.  The results are in reasonable agreement with paleodata over the ocean.   </p><p>Over the land the situation is more complicated.  Model and data are in very good agreement at lower latitudes, however at high latitudes an initial data-model comparison shows much warmer mPWP temperatures from data than from models.   </p><p>Here we consider possible reasons for this data-model discord at high latitudes.  These include uncertainties in model boundary conditions (such as CO<sub>2 </sub>and orbital forcing), and whether there are local site-specific conditions which need to be accounted for.  We also show that the seasonal cycle in mPWP temperatures at these high latitude sites has no modern analogue.  This could lead to inaccuracies when comparing model derived mean annual temperatures with quantitative climatic estimates from palaeobotanical data using Nearest Living Relative methods.</p>


2009 ◽  
Vol 5 (4) ◽  
pp. 785-802 ◽  
Author(s):  
M. Heinemann ◽  
J. H. Jungclaus ◽  
J. Marotzke

Abstract. We investigate the late Paleocene/early Eocene (PE) climate using the coupled atmosphere-ocean-sea ice model ECHAM5/MPI-OM. The surface in our PE control simulation is on average 297 K warm and ice-free, despite a moderate atmospheric CO2 concentration of 560 ppm. Compared to a pre-industrial reference simulation (PR), low latitudes are 5 to 8 K warmer, while high latitudes are up to 40 K warmer. This high-latitude amplification is in line with proxy data, yet a comparison to sea surface temperature proxy data suggests that the Arctic surface temperatures are still too low in our PE simulation. To identify the mechanisms that cause the PE-PR surface temperature differences, we fit two simple energy balance models to the ECHAM5/MPI-OM results. We find that about 2/3 of the PE-PR global mean surface temperature difference are caused by a smaller clear sky emissivity due to higher atmospheric CO2 and water vapour concentrations in PE compared to PR; 1/3 is due to a smaller planetary albedo. The reduction of the pole-to-equator temperature gradient in PE compared to PR is due to (1) the large high-latitude effect of the higher CO2 and water vapour concentrations in PE compared to PR, (2) the lower Antarctic orography, (3) the smaller surface albedo at high latitudes, and (4) longwave cloud radiative effects. Our results support the hypothesis that local radiative effects rather than increased meridional heat transports were responsible for the "equable" PE climate.


2021 ◽  
Author(s):  
Joanna Bullard

<div> <p>The world’s largest contemporary dust sources are in low-lying, hot, arid regions, however the processes of dust production and emission also operate in cold climate regions at high latitudes and altitudes.  This lecture focuses on contemporary dust emissions originating from the high latitudes (≥50°N and ≥40°S) and explores three themes before setting out an integrated agenda for future research.  The first theme considers how much dust originates from the high latitudes and methods for determining this.  Estimates from field studies, remote sensing and modelling all suggest around 5% of contemporary global dust emissions originate in the high latitudes, a similar proportion to that from the USA (excluding Alaska) or Australia.  This estimate is a proportion of a highly uncertain figure as quantification of dust emissions from Eurasian high latitudes is limited, and the contribution of local and regional emissions (from any latitude) to the global total is thought to be considerably under-estimated.  Emissions are particularly likely to be under-estimated where dust sources are topographically constrained, and where cold climates reduce vertical mixing of dust plumes restricting the altitudes to which the dust can rise, because both these characteristics present particular challenges for modelling and remote sensing approaches. The second theme considers the drivers of contemporary high latitude dust emissions that reflect complex interactions among sediment supply, sediment availability and transport capacity across different geomorphic sub-systems.  These interactions determine the magnitude, frequency and timing of dust emissions at a range of time scales (diurnal, seasonal, decadal) but both the drivers and response can be nonlinear and hard to predict.  The third and final theme explores the importance of high latitude dust cycling for facilitating cross-boundary material fluxes and its impact in the atmosphere, cryosphere, and terrestrial and marine ecosystems.  This is influenced not only by the quantity and timing of dust emissions but also by dust properties such as particle-size and geochemistry.  Landscape sensitivity, spatial environmental transitions and temporal environmental change are highlighted for their importance in determining how the interactions among drivers and cycles are likely to change in response to future environmental change.</p> </div>


2007 ◽  
Vol 3 (3) ◽  
pp. 499-512 ◽  
Author(s):  
S. Brewer ◽  
J. Guiot ◽  
F. Torre

Abstract. We present here a comparison between the outputs of 25 General Circulation Models run for the mid-Holocene period (6 ka BP) with a set of palaeoclimate reconstructions based on over 400 fossil pollen sequences distributed across the European continent. Three climate parameters were available (moisture availability, temperature of the coldest month and growing degree days), which were grouped together using cluster analysis to provide regions of homogenous climate change. Each model was then investigated to see if it reproduced 1) similar patterns of change and 2) the correct location of these regions. A fuzzy logic distance was used to compare the output of the model with the data, which allowed uncertainties from both the model and data to be taken into account. The models were compared by the magnitude and direction of climate change within the region as well as the spatial pattern of these changes. The majority of the models are grouped together, suggesting that they are becoming more consistent. A test against a set of zero anomalies (no climate change) shows that, although the models are unable to reproduce the exact patterns of change, they all produce the correct signs of change observed for the mid-Holocene.


2015 ◽  
Vol 15 (16) ◽  
pp. 22291-22329 ◽  
Author(s):  
C. E. Sioris ◽  
J. Zou ◽  
D. A. Plummer ◽  
C. D. Boone ◽  
C. T. McElroy ◽  
...  

Abstract. Seasonal and monthly zonal medians of water vapour in the upper troposphere and lower stratosphere (UTLS) are calculated for both Atmospheric Chemistry Experiment (ACE) instruments for the northern and southern high-latitude regions (60–90 and 60–90° S). Chosen for the purpose of observing high-latitude processes, the ACE orbit provides sampling of both regions in eight of 12 months of the year, with coverage in all seasons. The ACE water vapour sensors, namely MAESTRO (Measurements of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) and the Fourier Transform Spectrometer (ACE-FTS) are currently the only satellite instruments that can probe from the lower stratosphere down to the mid-troposphere to study the vertical profile of the response of UTLS water vapour to the annular modes. The Arctic oscillation (AO), also known as the northern annular mode (NAM), explains 64 % (r = −0.80) of the monthly variability in water vapour at northern high-latitudes observed by ACE-MAESTRO between 5 and 7 km using only winter months (January to March 2004–2013). Using a seasonal timestep and all seasons, 45 % of the variability is explained by the AO at 6.5 ± 0.5 km, similar to the 46 % value obtained for southern high latitudes at 7.5 ± 0.5 km explained by the Antarctic oscillation or southern annular mode (SAM). A large negative AO event in March 2013 produced the largest relative water vapour anomaly at 5.5 km (+70 %) over the ACE record. A similarly large event in the 2010 boreal winter, which was the largest negative AO event in the record (1950–2015), led to > 50 % increases in water vapour observed by MAESTRO and ACE-FTS at 7.5 km.


2002 ◽  
Vol 20 (9) ◽  
pp. 1311-1320 ◽  
Author(s):  
F. Pitout ◽  
P. T. Newell ◽  
S. C. Buchert

Abstract. We present EISCAT Svalbard Radar and DMSP observations of a double cusp during an interval of predominantly northward IMF on 26 November 2000. In the cusp region, the ESR dish, pointing northward, recorded sun-ward ionospheric flow at high latitudes (above 82° GL), indicating reconnection occuring in the magnetospheric lobe. Meanwhile, the same dish also recorded bursts of poleward flow, indicative of bursty reconnection at the subsolar magnetopause. Within this time interval, the DMSP F13 satellite passed in the close vicinity of the Svalbard archipelago. The particle measurement on board exhibited a double cusp structure in which two oppositely oriented ion dispersions are recorded. We interpret this set of data in terms of simultaneous merging at low- and high-latitude magnetopause. We discuss the conditions for which such simultaneous high-latitude and low-latitude reconnection can be anticipated. We also discuss the consequences of the presence of two X-lines in the dayside polar ionosphere.Key words. Magnetospheric physics (solar wind-magnetosphere interactions) – Ionosphere (polar ionosphere; plasma convection)


2012 ◽  
Vol 8 (4) ◽  
pp. 2969-3013 ◽  
Author(s):  
A. M. Haywood ◽  
D. J. Hill ◽  
A. M. Dolan ◽  
B. Otto-Bliesner ◽  
F. Bragg ◽  
...  

Abstract. Climate and environments of the mid-Pliocene Warm Period (3.264 to 3.025 Ma) have been extensively studied. Whilst numerical models have shed light on the nature of climate at the time, uncertainties in their predictions have not been systematically examined. The Pliocene Model Intercomparison Project quantifies uncertainties in model outputs through a co-ordinated multi-model and multi-model/data intercomparison. Whilst commonalities in model outputs for the Pliocene are evident, we show substantial variation in the sensitivity of models to the implementation of Pliocene boundary conditions. Models appear able to reproduce many regional changes in temperature reconstructed from geological proxies. However, data/model comparison highlights the potential for models to underestimate polar amplification. To assert this conclusion with greater confidence, limitations in the time-averaged proxy data currently available must be addressed. Sensitivity tests exploring the "known unknowns" in modelling Pliocene climate specifically relevant to the high-latitudes are also essential (e.g. palaeogeography, gateways, orbital forcing and trace gasses). Estimates of longer-term sensitivity to CO2 (also known as Earth System Sensitivity; ESS), suggest that ESS is greater than Climate Sensitivity (CS), and that the ratio of ESS to CS is between 1 and 2, with a best estimate of 1.5.


Sign in / Sign up

Export Citation Format

Share Document