Environmental Policies for Air Pollution and Climate Change in the New Europe

2010 ◽  
Author(s):  
Caterina De Lucia
2016 ◽  
Vol 6 (2) ◽  
pp. 1 ◽  
Author(s):  
Ross Gittell ◽  
Josh Stillwagon

<p>This paper explores the influence of US state-level policies meant to address climate change on clean technology industry development. The largest influence of climate change policies is identified as being on energy research employment. Only some policies seem to contribute positively to clean tech employment while other policies appear to discourage employment growth. The magnitudes of the short term effects, even when statistically significant, are modest. Negative impacts on employment are identified for several mandate-oriented, so called command and control, policies including vehicle greenhouse gas standards, energy efficiency resource standards, and renewable portfolio standards with the former two having increasing negative effects over time. The findings suggest that climate change policy advocates should be careful to not assume that there will be positive clean tech employment benefits from state-level energy and environmental policies. Instead, the benefits from these policies may derive primarily from other considerations beyond the scope of this paper, including health and environmental benefits and reduction of dependence on foreign energy sources.</p>


2021 ◽  
Vol 13 (12) ◽  
pp. 6600
Author(s):  
Jing Li ◽  
Lipeng Hou ◽  
Lin Wang ◽  
Lina Tang

The Chinese government has implemented a number of environmental policies to promote the continuous improvement of air quality while considering economic development. Scientific assessment of the impact of environmental policies on the relationship between air pollution and economic growth can provide a scientific basis for promoting the coordinated development of these two factors. This paper uses the Tapio decoupling theory to analyze the relationship between regional economic growth and air pollution in key regions of air pollution control in China—namely, the Beijing–Tianjin–Hebei region and surrounding areas (BTHS), the Yangtze River Delta (YRD), and the Pearl River Delta (PRD)—based on data of GDP and the concentrations of SO2, PM10, and NO2 for 31 provinces in China from 2000 to 2019. The results show that the SO2, PM10, and NO2 pollution in the key regions show strong and weak decoupling. The findings additionally indicate that government policies have played a significant role in improving the decoupling between air pollution and economic development. The decoupling between economic growth and SO2 and PM10 pollution in the BTHS, YRD, and PRD is better than that in other regions, while the decoupling between economic growth and NO2 pollution has not improved significantly in these regions. To improve the relationship between economic growth and air pollution, we suggest that the governments of China and other developing countries should further optimize and adjust the structure of industry, energy, and transportation; apply more stringent targets and measures in areas of serious air pollution; and strengthen mobile vehicle pollution control.


2020 ◽  
pp. 107554702098044
Author(s):  
P. Sol Hart ◽  
Lauren Feldman

This experiment examines how framing power plant emissions in terms of air pollution or climate change, and in terms of health or environmental impacts, influences perceived benefits and costs of policies to reduce emissions and intentions to take political action that supports such policies. A moderated-mediation model reveals that focusing on air pollution, instead of climate change, has a positive significant indirect influence on intended political action through the serial mediators of perceived benefits and costs. Political ideology moderates the association between perceived benefits and political action. No framing effects are observed in the comparison between health and environmental impacts.


Stroke ◽  
2016 ◽  
Vol 47 (suppl_1) ◽  
Author(s):  
Longjian Liu ◽  
Hui Liu ◽  
Xuan Yang ◽  
Feng Jia ◽  
Mingquan Wang

Introduction and Hypothesis: Stroke is a leading cause of death and the major cause of disability in the world. However, few studies applied multilevel regression techniques to explore the association of stroke risk with climate change and air pollution. In the study, we aimed to test the hypothesis that the disproportionately distributed stroke rates across the counties and cities within a country are significantly associated with air pollution and temperature. Methods: We used data from U.S. 1118 counties in 49 states, which had estimated measures of particulate matter (PM)2.5 for the years 2010-2013, and data from China 120 cities in 32 provinces (including 4 municipalities), which had measures of Air Pollution Index (API) for the years 2012-2013. We assessed the association between air quality and prevalence of stroke using spatial mapping, autocorrelation and multilevel regression models. Results: Findings from the U.S. show that the highest average PM2.5 level was in July (10.2 μg/m3) and the lowest in October (7.63 μg/m3) for the years 2010-2013. Annual average PM2.5 levels were significantly different across the 1118 counties, and were significantly associated with stroke rates. Multilevel regression analysis indicated that the prevalence of stroke significantly increased by 1.19% for every 10 μg/m3 increase of PM2.5 (p<0.001). Significant variability in PM2.5 by states was observed (p=0.019). More than 70% of the variation in stroke rates existed across the counties (p=0.017) and 18.7% existed across the states (p=0.047). In China, the highest API was observed in the month of December, with a result of 75.76 in 2012 and 97.51 in 2013. The lowest API was observed in July, with a result of 51.21 in 2012, and 54.23 in 2013. Prevalence of stroke was significantly higher in cities with higher API concentrations. The associations between air quality and risk of stroke were significantly mediated by temperatures. Conclusions: The study, using nationally representative data, is one of the first studies to address a positive and complex association between air quality and prevalence of stroke, and a potential interaction effect of temperatures on the air - stroke association.


2021 ◽  
Author(s):  
Melania Michetti ◽  
Maurizio Gualtieri ◽  
Alessandro Anav ◽  
Mario Adani ◽  
Barbara Benassi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document